
Bayesian methods in medical research
Practicals solutions

Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5
Exercise 6
Exercise 7
Exercise 8
BONUS Exercise 9

Exercise 1
In the context of the historical example, we want to elicitate a prior distribution from expert knowledge.

Now, let’s imagine we have 2 expert demographers, each giving their expert opinion about the value they think
plausible for (the probability of a birth being a girl rather than a boy).

We asks each of them to give values for which the probability of being lower would be respectively 10%, 25%,
50%, 75%, and 90%. First expert says:

while the second expert says:

0. First, let’s load the SHELF R package:

library(SHELF)

1. Using the fitdist() function from the SHELF package, estimate the parameter form the Beta
distribution that best fit each of those elicitations (Protip: have a look at the package intro vignette here
(https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.pdf)).

2. Plot those two Beta prior distributions, along with their “linear pooling” using the plotfit() function from
the SHELF package (Protip: use the lp = TRUE argument).

3. Create a consensus Beta prior by averaging both expert answers, and plot it.

Exercise 2
1. The Law of Large Numbers and Monte-Carlo Estimation.

a. Write a function which generates a sample of observations from a Gaussian distribution (with
mean and standard deviation) and that returns the standard-deviation estimate over this
sample (using the sd() function).

θ

θ

P(θ < 0.2) = 10%, P(θ < 0.4) = 25%, P(θ < 0.5) = 50%, P(θ < 0.6) = 75%, and P(θ < 0.8) = 90%

P(θ < 0.5) = 10%, P(θ < 0.6) = 25%, P(θ < 0.7) = 50%, P(θ < 0.8) = 75%, and P(θ < 0.9) = 90%

10 iid

m = 2 s = 3

https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.pdf

sd_est <- function(n = 10) {
 s <- rnorm(n, mean = 2, sd = 3)

 return(sd(s))
}

b. Use the the Monte-Carlo method to estimate the standard deviation of tthe distribution generating this
sample, by using multiple realizations (e.g. 5) of the standard-deviation estimate implemented above.
Do it again with 1,000 realizations, thus illustrating the law of large number convergence.

Monte-Carlo method
nMC <- 5

sdMC <- numeric(nMC)
for (i in 1:nMC) {
 sdMC[i] <- sd_est(n = 10)

}
mean(sdMC)

2. Let’s now program a Monte-Carlo estimate of

a. Program a function roulette_coord which has only one argument ngrid (representing the number
of different outcomes possible on the roulette used) whose default is 35 , generating the two
coordinates of a point (between and) as a vector. Use the R function sample (whhose help page
is accessible through the command ?sample). The function will return the vector of the 2 coordinates
x and y generated this way.

roulette_coord <- function(ngrid = 35) {
 x <- sample(x = 0:ngrid, size = 1)

 y <- sample(x = 0:ngrid, size = 1)
 return(c(x, y))
}

b. Thanks to the formula to compute the distance bewteen 2 points: ,

program a function computing the distance to the origin (here has coordinates) that

checks if the computed distance is less than the unit disk radius (). This function, called for
instance inside_disk_fun() , will have 2 arguments: the vector p containing the coordinates of the
points on the one hand, and the integer ngrid on the other hand. It will return a boolean value
(TRUE or FALSE) indicating the point is inside the disk.

inside_disk_fun <- function(p, ngrid = 35) {
 d <- sqrt((p[1] - ngrid/2)^2 + (p[2] - ngrid/2)^2)
 return(d <= ngrid/2)
}

c. The surface ratio between the disk (radius) and the square (side length) is equal to . This
means that the probability of sampling a point inside the disk rather than outside is . Using this result,
a Monte Carlo estimate of can be implemented by computing the average number of time sampled
points fall inside the disk multiplied by 4. Program such a function with their only input being a boolean
vector of size (the number of sampled points), which is TRUE if the point is indeed inside the disk and
FALSE otherwise.

π ≈ 3, 1416

0 35

d = (− + (−x1 x2)2 y1 y2)2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
(,)

ngrid

2

ngrid

2

R =
ngrid

2

ngrid

2
ngrid π

4
π

4

π

n

d. Using the code below, generate 200 points and plot the data generated. What is the corresponding
Monte Carlo estimate of ? Change npoints and comment. How could the estimation be improved
(ProTip: try ngrid <- 1000 and npoints <- 5000) ?

Grid size (resolution)

ngrid <- 35

Monte Carlo sample size

npoints <- 200

Points generation
pp <- matrix(NA, ncol = 2, nrow = npoints)

for (i in 1:nrow(pp)) {
 pp[i,] <- roulette_coord(ngrid)
}

Estimate pi

in_disk <- apply(X = pp, MARGIN = 1, FUN = inside_disk_fun, ngrid = ngrid)
piMC(in_disk)

Plot first we initialise an empty plot with the right size using argument

plot(x = pp[, 1], y = pp[, 2], xlim = c(0, ngrid), ylim = c(0, ngrid), axes = 0,

 xlab = "x", ylab = "y", type = "n")
we tick the x and then y axes from 1 to ngrid

axis(1, at = c(0:ngrid))
axis(2, at = c(0:ngrid))

we add a square around the plot
box()

we plot the grid (using dotted lines thanks to the argument `lty = 3`) onto

which the points are sample
for (i in 0:ngrid) {
 abline(h = i, lty = 3)
 abline(v = i, lty = 3)

}
we add the sampled points

lines(x = pp[, 1], y = pp[, 2], xlim = c(0, ngrid), ylim = c(0, ngrid), xlab =
"x",

 ylab = "y", type = "p", pch = 16)

we add the circle display
x.cercle <- seq(0, ngrid, by = 0.1)

y.cercle <- sqrt((ngrid/2)^2 - (x.cercle - ngrid/2)^2)
lines(x.cercle, y = y.cercle + ngrid/2, col = "red")

lines(x.cercle, y = -y.cercle + ngrid/2, col = "red")
finally we color in red the points sampled inside the disk

lines(x = pp[in_disk, 1], y = pp[in_disk, 2], xlim = c(0, ngrid), ylim = c(0, ng

rid),
 xlab = "x", ylab = "y", type = "p", pch = 16, col = "red", cex = 0.7)

π

Exercise 3
Program a sampling algorithm to sample from the exponential distribution with parameter thanks to the inverse
transform function (starting from the R function runif).
Compare the distribution of your sample to the theoretical target distribution (thanks to the built-in R function
dexp).

Try out several values for the parameter of the exponential distribution (e.g. 1, 10, 0.78, …) to check that the
algorithm is indeed working.

generate_exp <- function(n, lambda) {
 u <- ...
 x <- ...
 return(x)
}
my_samp <- generate_exp(n = 100, lambda = 10)

hist(my_samp, probability = TRUE, n = 25)

curve(dexp(x, rate = 10), from = 0, to = max(my_samp), col = "red", lty = 2, add = TRUE)
legend("topright", c("Inverse transform", "R dexp()"), col = c("black", "red"), lty = c(1,

 2))

Exercise 4
Using the historical example, program an independent Metropolis-Hastings algorithm to estimate the posterior
distribution of parameter (i.e. the probability of having a girl for a birth). The prior distribution on will be used as
the instrumental proposal, and we will start by using a uniform prior on . We will consider the births
observed in Paris between 1745 and 1770, of which were girls.

λ

λ

θ θ

θ 493, 472

241, 945

1. Program a function that computes the numerator of the posterior density, which can be written
 with and (plan for a boolean argument that will allow to

return — or not — the logarithm of the posterior instead).

post_num_hist <- function(theta, log = FALSE) {

 n <- 493472 # the data
 S <- 241945 # the data

 if (log) {
 num <- S * log(theta) + (n - S) * log(1 - theta) # the **log** numerator of
the posterior

 } else {
 num <- theta^S * (1 - theta)^(n - S) # the numerator of the posterior
 }

 return(num) # the output of the function
}

post_num_hist(0.2, log = TRUE)

[1] -445522.1

post_num_hist(0.6, log = TRUE)

[1] -354063.6

2. Program the corresponding Metropolis-Hastings algorithm, returning a vector of size sampled according to
the posterior distribution. Also, have the algorithm return the vector of acceptance probabilities . What
happens if this acceptance probability is NOT computed on the scale ?

p(θ|n, S) ∝ (1 − θθS)n−S S = 241 945 n = 493 472

n

α

log

myMH <- function(niter, post_num) {

 x_save <- numeric(length = niter) #create a vector of 0s
 # of length niter to store the sampled values

 alpha <- numeric(length = niter) #create a vector of 0s

 # of length niter to store the acceptance probabilities

 # initialise x0

 x <- runif(n = 1, min = 0, max = 1)

 # accpetance-rejection loop
 for (t in 1:niter) {
 # sample y from the proposal (here uniform prior)
 y <- runif(n = 1, min = 0, max = 1)

 # compute the acceptance-rejection probability

 alpha[t] <- min(1, exp(post_num(y, log = TRUE) - post_num(x, log = TRUE)))
 # accept or reject

 u <- runif(1)
 if (u <= alpha[t]) {
 x_save[t] <- y
 } else {
 x_save[t] <- x
 }

 # update the current value
 x <- x_save[t]

 }
 return(list(theta = x_save, alpha = alpha))
}

3. Compare the posterior density obtained with this Metropolis-Hastings algorithm over 2000 iterations to the
theoretical one (the theoretical density can be obtained with the R function
dbeta(x, 241945 + 1, 251527 + 1) and represented with the R function
curve(..., from = 0, to = 1, n = 10000)). Mindfully discard the first 500 iterations of your Metropolis-

Hastings algorithm in order to reach the Markov chain convergence before constructing your Monte Carlo
sample. Comment those results, especially in light of the acceptance probabilities computed throughout the
algorithm, as well as the different sampled values for .

4. Now imagine we only observe births, among which girls, and use a distribution
as prior. Program the corresponding M-H algorithm and study the new results (one can do iterations
of this new M-H algorithm for instance, again mindfully discarding the first 500 iterations).

5. Using the data from the historical example and with a prior, program a random-walk
Metropolis-Hastings algorithm (with a uniform random step of width for instance). This means that the
proposal is going to change, and is now going to depend on the previous value.
Once again, study the results obtained this way (one can change the width of the random step).

Exercise 5

θ

100 49 Beta(α = 3, β = 3)

10, 000

Beta(α = 3, β = 3)

0.02

The BUGS project (https://www.mrc-bsu.cam.ac.uk/software/bugs/) (Bayesian inference Using Gibbs Sampling) was
initiated in 1989 by the MRC (Medical Research Council) Biostatistical Unit at the University of Cambridge (United-
Kingdom) to develop a flexible and user-friendly software for Bayesian analysis of complex models through MCMC
algorithms. Its most famous and original implementation is WinBUGS , a clicking software available under Windows.
OpenBUGS is an alternative implementation of WinBUGS running on either Windows, Mac OS ou Linux. JAGS

(http://mcmc-jags.sourceforge.net/) (Just another Gibbs Sampler) is a different and newer implementation that also
relies on the BUGS language. Finally, the STAN (http://mc-stan.org/) software must also be mentionned, recently
developed et the Columbia Univeristy, ressemble BUGS through its interface, but relies on innovative MCMC
approaches, such as Hamiltonian Monte Carlo, or variational Bayes approaches. A very useful resource is the JAGS
user manual (http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf).

To familiarise yourself with JAGS (and its R interface through the package rjags), we will look here at the
posterior estimation of the mean and variance of observed data that we will model with a Gaussian distribution.

0. Start by loading the R package rjags .

library(rjags)

A BUGS model has 3 components:

the model: specified in an external text file (.txt) according to a specific BUGS syntax
the data: a list containing each observation under a name matching the one used in the model specification
the initial values: (optional) a list containing the initial values for the various parameters to be estimated

1. Sample observations from a Gaussian distribution with mean and standard deviation
using the R function rnorm and store it into an object called obs .

N <- 50 # the number of observations
obs <- rnorm(n = N, mean = 2, sd = 3) # the (fake) observed data

2. Read the help of the rjags package, then save a text file (.txt) the following code defining the BUGS
model:

Model

model{

 # Likelihood
 for (i in 1:N){

 obs[i]~dnorm(mu,tau)
 }

 # Prior
 mu~dnorm(0,0.0001) # proper but very flat (so weakly informative)

 tau~dgamma(0.0001,0.0001) # proper, and weakly informative (conjugate for Gaussian)

 # Variables of interest
 sigma <- pow(tau, -0.5)

}

N = 50 m = 2 s = 3

https://www.mrc-bsu.cam.ac.uk/software/bugs/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf

Each model specification file must start with the instruction model{ indicating JAGS is about to receive a model
specification. Then the model must be set up, usually by cycling along the data with a for loop. Here, we want to
declare N observations, and each of them obs[i] follows a Gaussian distribution (characterized with the
command dnorm) of mean mu and precision tau .

⚠ In BUGS , the Gaussian distribution is parameterized by its precision, which is simply the inverse of the variance
(). Then, one needs to define the prior distribution for each parameter -– here both mu and tau . For mu ,
we use a Gaussian prior with mean and precision (thus variance : this corresponds to a weakly
informative prior quite spread out given the scale of our data. For tau we use the conjugate prior for precision in a
Gaussian model, namely the Gamma distribution (with very small parameters, here again to remain the least
informative possible). Finally, we give a deterministic definition of the additional parameters of interest, here the
standard deviation sigma .

NB: ~ indicates probabilistic distribution definition of a random variable, while <- indicates a deterministic
calculus definition.

3. With the R function jags.model() , create a jags object R .

myfirstjags <- jags.model("normalBUGSmodel.txt", data = list(obs = obs, N = length(ob

s)))

4. With the R function coda.samples() , generate a sample of size from the posterior distributions for
the mean and standard deviation parameters.

res <- coda.samples(model = myfirstjags, variable.names = c("mu", "sigma"), n.iter =

2000)

5. Study the output of the coda.samples() R function, and compute both the posterior mean and median
estimates for mu and sigma . Give a credibility interval at 95% for both.

6. Load the coda R package. This package functions for convergence diagnostic and analysis of MCMC
algorithm outputs.

library(coda)

7. To diagnose the convergence of an MCMC algorithm, it is necessary to generate different Markov chains, with
different initial values. Recreate a new jags object in R and specify the use of 3 Markov chains with the
argument n.chains , and initialize mu at and tau at respectively with the
argument inits (ProTip: use a list of list , one for each chain).

inits = list(list(mu = 0, tau = 1), list(mu = -10, tau = 1/100), list(mu = 100, tau =

1/10))

8. With the R function gelman.plot() , plot the Gelman-Rubin statistic.

9. With the R functions autocorr.plot() and acfplot() evaluate the autocorrélation of the studied
parameters.

τ = 1/σ2

0 10−4 10, 000

2, 000

0, −10, 100 1, 0.01, 0.1

10. With the R function cumuplot() evaluate the running quantiles of the studied parameters. How can you
interpret them ?

11. With the function hdi() from the R package HDInterval , provide highest densitity posterior credibility
intervals at 95%, and compare them to those obtained with the % and % quantiles.

Exercise 6
The randomized clinical trial EOLIA evaluated a new treatment for severe acute respiratory distress syndrome
(severe ARDS) by comparing the mortality rate after 60 days among 249 patients randomized between a control
group (receiving conventional treatment, i.e. mechanical ventilation) and a treatment group receiving extracorporeal
membrane oxygenation (ECMO) — the new treatment studied. A frequentist analysis of the data concluded to a
Relative Risk of death of in the ECMO group compared to controls (in Intention to Treat), with

 and the associated p-value of .

Goligher et al. (2019) performed a Bayesian re-analysis of these data, further exploring the evidence and how it can
be quantified and summarized with a Bayesian approach.

Observed data from the EOLIA trial

Control ECMO

 observed 125 124

number of deceased at 60 days 57 44

1. Write the Bayesian model used by Goligher et al. (2019).

2. Write the corresponding BUGS model, and save it into a .txt file (for instance called
goligherBUGSmodel.txt)

3. First create two binary data vectors ycontrol and yecmo , that are either 1 or 0 , to encode the
observations from the data table above. Then uses the jags.model() and coda.samples() to replicate the
estimation from Goligher et al. (2019) (ProTip: use the function window() to remove the burn-in observation
from the output of the coda.samples function.)

4. Check the convergence, and then comment the estimate results (ProTip: look at the effective sample size
with the effectiveSize() R function).

5. Change to a more informative prior using a Gaussian distribution for the log(RR), centered on log(0.78) and
with a standard deviation of 0.15 in the log(RR) scale (i.e. a precision of). Comment the results. Try out
other prior distributions.

Exercise 7
In 2014, Crins et al. published a meta-analysis assessing the incidence of acute rejection (AR) with or without
Interleukin-2 receptor antagonists. In this exercise we will recreate this analysis.

0. Load the package bayesmeta and the data from Crins et al. (2014) with the R command
data("CrinsEtAl2014") .

2.5 97.5

1

0.76

C = [0.55, 1.04]I95% 0.09

2

n

≈ 45

3

4

library(bayesmeta)
data(CrinsEtAl2014)

1. Play around with the companion shiny app at: https://rshiny.gwdg.de/apps/bayesmeta/
(https://rshiny.gwdg.de/apps/bayesmeta/).
If the website is unavailable, you can launch the app locally by running the 2 following commands from :

library("shiny")
install.packages("rhandsontable")

runUrl("http://www.gwdg.de/~croever/bayesmeta/bayesmeta-app.zip")

2. Within R now, using the escalc() function from the package metafor , compute the estimated log odds
ratios from the 6 considered studies alongside their sampling variances (ProTip: read the Measures for
Dichotomous Variables section from the help of the escalc() function). Check that those are the same as
the one on the online shiny app (ProTip: ‘sigma’ is the standard error, i.e. the square root of the sampling
variance vi)

library("metafor")
crins.es <- escalc(measure = "OR", ai = exp.AR.events, n1i = exp.total, ci = cont.AR.
events,

 n2i = cont.total, slab = publication, data = CrinsEtAl2014)

crins.es[, c("publication", "yi", "vi")]

publication yi vi

Heffron (2003) -2.3097026 0.3593718

Gibelli (2004) -0.4595323 0.3095760

Schuller (2005) -2.3025851 0.7750000

Ganschow (2005) -1.7578579 0.2078161

Spada (2006) -1.2584610 0.4121591

Gras (2008) -2.4178959 2.3372623

NB: Log-odds ratios are symmetric around zero and have a sampling distribution closer to the normal
distibution than the natural OR scale. For this reason, they are usually prefered for meta-analyses. Their
sample variance is then computed as the sum of the inverse of all the counts in the associated
contingency table .

3. Perform a random-effect meta-analysis of those data using the bayesmeta() function from the package
bayesmeta , within R . Use a uniform prior on for and a Gaussian prior for centered around and

with a standard deviation of .

4. Write the corresponding random-effects Bayesian meta-analysis model (using math, not R – yet).

5. Use rjags to estimate the same model, saving the BUGS model written below in a .txt file (called
crinsBUGSmodel.txt for instance).

Exercise 8

2 × 2
5

[0, 4] τ μ 0

4

https://rshiny.gwdg.de/apps/bayesmeta/

We will now analyze data from the therapeutic clinical trial ALBI-ANRS 070 which compared the efficacy and
tolerance of 3 anti-retrovirales strategies among HIV-1 positive patients naive of any anti-retroviral treatment .

1. Load the data from the albianrs_data.csv available here (/files/albianrs_data.csv) (ProTip: set
stringsAsFactors = TRUE in read.delim())

albi <- read.csv("albianrs_data.csv", stringsAsFactors = TRUE,)

summary(albi)

The following variables are available:

PatientID : Patient ID
ViralLoad : Plasma viral load
CD4 : CD4 T-cell lymphocites rate (in cell/mm)
CD4t : transformed CD4 T-cell lymphocites rate (in cell/mm) (CD4t = CD4)
CD4sup500 : binary variable indicating wether CD4 cell counts is above 500
Treatment : Treatment group (d4t + ddI), (alternance) ou (AZT + 3TC))
Day : Day of visit (since inclusion)
Visit : Visit number

Below is a quantitative summary of the characteristics of those variables.

Summary of the Albi-ANRS-
070 trial data

Variable N = 950

ViralLoad 2.71 (2.04, 3.69)

CD4 465 (377, 585)

CD4t 4.64 (4.41, 4.92)

CD4sup500 392 (41%)

Treatment

 AZT+3TC 315 (33%)

 d4t+ddI 322 (34%)

 switch 313 (33%)

Day 84 (29, 140)

Visit

 0 146 (15%)

 1 140 (15%)

 2 136 (14%)

 Median (IQR) or n (%)

6

3

3 1/4

1 2 3

1

1

http://127.0.0.1:6152/files/albianrs_data.csv

Variable N = 950

 3 130 (14%)

 4 128 (13%)

 5 135 (14%)

 6 135 (14%)

 Median (IQR) or n (%)

NB: for simplicity, NA values have been omitted.

2. First, we want to explain the CD4 rate (as a transformed variable) from the viral load

a. Display CD4t in scatterplot as a function of the ViralLoad and color the pointts according to
Treatment .

library(ggplot2)
library(MetBrewer)
ggplot(albi, aes(y = CD4t, x = ViralLoad, color = Treatment)) + geom_point(alpha

= 0.7) +
 MetBrewer::scale_color_met_d("Java") + theme_bw()

b. Write down the Bayesian mathematical model corresponding to a linear regression of CD4t against the
ViralLoad stratified on the Treatment

c. Write the corresponding BUGS model and save it in an external .txt file.

d. Create the corresponding jags object in and generate a Monte Carlo sample of size 1000 for the 3
parameters of interest

e. Before interpreting the results, check tthe convergence. What do you notice ?

f. Using the window function, remove the 500 first iterations as burn-in to reach Markov Chain
convergence to its stationary distribution (the posterior). Is it sufficient to solve convergence issues ?

g. Check the effective sample size of the Monte Carlo sample with the effectiveSize() function.
Reduuce auto-corrlation by increasing the thin parameter to 10 in coda.samples . Check the impact
on the effective sample

3. Compare those results with a frequentist analysis.

4. Perform a Bayesian logistic regression to study the impact of the treatment on the binary outcome
CD4sup500 adjusted on the viral load. Once you have a first estimation, ttry adding an interaction between

the tratment and the viral load.

BONUS Exercise 9
In this exercise, we will first do a critical reading of the article from Kaguelidou et al. (2016) .

1. List the method elements that are missing from this article.

2. Read and discuss Table 3.

1

1

7

3. Load the R package bcrm and conduct an imaginary CRM trial interactive with the following code lines:

library(bcrm)
sdose <- c(1, 1.5, 2, 2.5, 3)

dose.label <- c(5, 10, 15, 25, 40, 50, 60)
p.tox0 <- c(0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05)

bcrm(stop = list(nmax = 42), p.tox0 = p.tox0, dose = dose.label, ff = "power", prior.
alpha = list(1,

 1, 1), target.tox = 0.3, start = 1)

1. Alain Combes et al., “Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress
Syndrome,” New England Journal of Medicine 378, no. 21 (2018): 1965–75, doi:10.1056/NEJMoa1800385
(https://doi.org/10.1056/NEJMoa1800385).↩

2. Ewan C. Goligher et al., “Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress
Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized
Clinical Trial,” JAMA 320, no. 21 (2018): 2251, doi:10.1001/jama.2018.14276
(https://doi.org/10.1001/jama.2018.14276).↩

3. Nicola D Crins et al., “Interleukin-2 Receptor Antagonists for Pediatric Liver Transplant Recipients: A
Systematic Review and Meta-Analysis of Controlled Studies,” Pediatric Transplantation 18, no. 8 (2014): 839–
50, doi:10.1111/petr.12362 (https://doi.org/10.1111/petr.12362).↩

4. Christian Röver, “Bayesian Random-Effects Meta-Analysis Using the Bayesmeta R Package,” Journal of
Statistical Software 93 (2020): 1–51, doi:10.18637/jss.v093.i06 (https://doi.org/10.18637/jss.v093.i06).↩

5. Joseph L. Fleiss and Jesse A. Berlin, “Effect Sizes for Dichotomous Data,” in The Handbook of Research
Synthesis and Meta-Analysis, 2nd Ed (New York, NY, US: Russell Sage Foundation, 2009), 237–53.↩

6. Jean-Michel Molina et al., “The ALBI Trial: A Randomized Controlled Trial Comparing Stavudine Plus
Didanosine with Zidovudine Plus Lamivudine and a Regimen Alternating Both Combinations in Previously
Untreated Patients Infected with Human Immunodeficiency Virus,” The Journal of Infectious Diseases 180, no.
2 (1999): 351–58, doi:10.1086/314891 (https://doi.org/10.1086/314891).↩

7. Florentia Kaguelidou et al., “Dose-Finding Study of Omeprazole on Gastric pH in Neonates with Gastro-
Esophageal Acid Reflux Using a Bayesian Sequential Approach,” ed. Imti Choonara, PLOS ONE 11, no. 12
(2016): e0166207, doi:10.1371/journal.pone.0166207 (https://doi.org/10.1371/journal.pone.0166207).↩

https://doi.org/10.1056/NEJMoa1800385
https://doi.org/10.1001/jama.2018.14276
https://doi.org/10.1111/petr.12362
https://doi.org/10.18637/jss.v093.i06
https://doi.org/10.1086/314891
https://doi.org/10.1371/journal.pone.0166207

