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Exercise 1
In the context of the historical example, we want to elicitate a prior distribution from expert knowledge.

Now, let’s imagine we have 2 expert demographers, each giving their expert opinion about the value they think
plausible for  (the probability of a birth being a girl rather than a boy).

We asks each of them to give values for which the probability of  being lower would be respectively 10%, 25%,
50%, 75%, and 90%. First expert says:

while the second expert says:

0. First, let’s load the SHELF  R package:

library(SHELF)

1. Using the fitdist()  function from the SHELF   package, estimate the parameter form the Beta
distribution that best fit each of those elicitations (Protip: have a look at the package intro vignette here
(https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.html)).

θ

θ

P(θ < 0.2) = 10%, P(θ < 0.4) = 25%, P(θ < 0.5) = 50%, P(θ < 0.6) = 75%, and P(θ < 0.8) = 90%

P(θ < 0.5) = 10%, P(θ < 0.6) = 25%, P(θ < 0.7) = 50%, P(θ < 0.8) = 75%, and P(θ < 0.9) = 90%

https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.html
https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.html


v <- cbind(c(0.2, 0.4, 0.5, 0.6, 0.8),
           c(0.5, 0.6, 0.7, 0.8, 0.9)
)
p <- c(0.1, 0.25, 0.5, 0.75, 0.9)

expertPriors <- fitdist(vals = v, probs = p, lower = 0, upper = 1,
                        expertnames=c("Expert 1", "Expert 2"))

expertPriors$Beta

##            shape1   shape2
## Expert 1 3.634819 3.634835
## Expert 2 6.047483 2.692690

2. Plot those two Beta prior distributions, along with the “linear pooling” of their 2 curves using the plotfit()
function from the SHELF   package (Protip: use the lp = TRUE  argument).

expertPlot <- plotfit(expertPriors, d = "beta", lp = TRUE, xl = 0, xu = 1, 
                      xlab = expression(theta), ylab = expression(pi(theta)), 
                      returnPlot = TRUE)

3. Derive a consensus Beta prior, by averaging each of both expert quantiles, and plot it.

v <- cbind(c(0.2, 0.4, 0.5, 0.6, 0.8),
           c(0.5, 0.6, 0.7, 0.8, 0.9),
           c(0.35, 0.5, 0.6, 0.7, 0.85))
p <- c(0.1, 0.25, 0.5, 0.75, 0.9)
consensusPrior <- fitdist(vals = v, probs = p, lower = 0, upper = 1, 
                          expertnames=c("Expert 1", "Expert 2", "Consensus"))

consensusPrior$Beta



##             shape1   shape2
## Expert 1  3.634819 3.634835
## Expert 2  6.047483 2.692690
## Consensus 4.822237 3.288318

consensusPlot <- plotfit(consensusPrior, d = "beta", xl = 0, xu = 1, 
                         xlab = expression(theta), ylab = expression(pi(theta)), 
                         returnPlot = TRUE)

Exercise 2
1. The Law of Large Numbers and Monte-Carlo Estimation.

a. Write a function which generates a sample of  observations  from a Gaussian distribution (with
mean  and standard deviation , i.e. a variance of ) and that returns the variance estimate
over this sample (using the var()  function).

var_est <- function(n = 10) {
    s <- rnorm(n, mean = 2, sd = 3)
    return(var(s))
}

b. Use the the Monte-Carlo method to estimate the variance of the distribution generating this sample, by
using multiple realizations (e.g. 5) of the standard-deviation estimate implemented above. Do it again
with 1,000 realizations, thus illustrating the law of large number convergence.

# Monte-Carlo method
nMC <- 5  # Monte Carlo sample size
varMC <- numeric(nMC)
for (i in 1:nMC) {
    varMC[i] <- var_est(n = 10)
}
mean(varMC)  # LLN estimate 
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## [1] 9.911995

nMC <- 1000  # Monte Carlo sample size
for (i in 1:nMC) {
    varMC[i] <- var_est(n = 10)
}
mean(varMC)  # LLN estimate

## [1] 9.048896

When the sample size increases, the estimator becomes more precise. This illustrates the Law of Large
Numbers.

2. Let’s now program a Monte-Carlo estimate of 

a. Program a function roulette_coord  which has only one argument ngrid  (representing the number
of different outcomes possible on the roulette used) whose default is 35 , generating the two
coordinates of a point (between  and ) as a vector. Use the R  function sample  (whhose help page
is accessible through the command ?sample ). The function will return the vector of the 2 coordinates
x  and y  generated this way.

roulette_coord <- function(ngrid = 35) {
    x <- sample(x = 0:ngrid, size = 1)
    y <- sample(x = 0:ngrid, size = 1)
    return(c(x, y))
}

b. Thanks to the formula to compute the distance bewteen 2 points: ,

program a function computing the distance to the origin (here has coordinates ) that

checks if the computed distance is less than the unit disk radius ( ). This function, called for
instance inside_disk_fun() , will have 2 arguments: the vector p  containing the coordinates of the
points on the one hand, and the integer ngrid  on the other hand. It will return a boolean value
( TRUE or FALSE ) indicating the point is inside the disk.

inside_disk_fun <- function(p, ngrid = 35) {
    d <- sqrt((p[1] - ngrid/2)^2 + (p[2] - ngrid/2)^2)
    return(d <= ngrid/2)
}

c. The surface ratio between the disk (radius ) and the square (side length ) is equal to . This
means that the probability of sampling a point inside the disk rather than outside is . Using this result,
a Monte Carlo estimate of  can be implemented by computing the average number of time sampled
points fall inside the disk multiplied by 4. Program such a function with their only input being a boolean
vector of size  (the number of sampled points), which is TRUE  if the point is indeed inside the disk
and FALSE  otherwise.
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piMC <- function(in_disk) {
    return(4 * mean(in_disk))
}

d. Using the code below, generate 200 points and plot the data generated. What is the corresponding
Monte Carlo estimate of  ? Change npoints  and comment. How could the estimation be improved
(ProTip: try ngrid <- 1000  and npoints <- 5000 ) ?

# Grid size (resolution)
ngrid <- 35

# Monte Carlo sample size
npoints <- 200

# Points generation
pp <- matrix(NA, ncol = 2, nrow = npoints)
for (i in 1:nrow(pp)) {
    pp[i, ] <- roulette_coord(ngrid)
}

# Estimate pi
in_disk <- apply(X = pp, MARGIN = 1, FUN = inside_disk_fun, ngrid = ngrid)
piMC(in_disk)

# Plot first we initialise an empty plot with the right size using argument
plot(x = pp[, 1], y = pp[, 2], xlim = c(0, ngrid), ylim = c(0, ngrid), axes = 
0,
    xlab = "x", ylab = "y", type = "n")
## we tick the x and then y axes from 1 to ngrid
axis(1, at = c(0:ngrid))
axis(2, at = c(0:ngrid))
## we add a square around the plot
box()
## we plot the grid (using dotted lines thanks to the argument `lty = 3`) onto
## which the points are sample
for (i in 0:ngrid) {
    abline(h = i, lty = 3)
    abline(v = i, lty = 3)
}
## we add the sampled points
lines(x = pp[, 1], y = pp[, 2], xlim = c(0, ngrid), ylim = c(0, ngrid), xlab = 
"x",
    ylab = "y", type = "p", pch = 16)
## we add the circle display
x.circle <- seq(0, ngrid, by = 0.1)
y.circle <- sqrt((ngrid/2)^2 - (x.circle - ngrid/2)^2)
lines(x.circle, y = y.circle + ngrid/2, col = "red")
lines(x.circle, y = -y.circle + ngrid/2, col = "red")
## finally we color in red the points sampled inside the disk
lines(x = pp[in_disk, 1], y = pp[in_disk, 2], xlim = c(0, ngrid), ylim = c(0, n
grid),
    xlab = "x", ylab = "y", type = "p", pch = 16, col = "red", cex = 0.7)

π



When the sample size increase, the Monte Carlo estimator becomes more precise (LLN). However, if the
grid is too coarse,  is underestimated (underestimating the disk surface by missing the bits near the
edge). Therefore, increasing the number of points on the grid also improves the precision of the Monte
Carlo estimation.

Exercises on Probablity of Success
Exercise 1: propose a sample size for the
confirmatory trial
Requirements/assumptions:

We would like to have a power of 90%
We would like to control the false positive rate at a one-sided 2.5% level
Make appropriate assumptions about:

the expected difference  in mean CFB in MMD at week 12
the standard deviation  for the CFB in MMD at week 12

The sample size per arm is given by the following formula:

NB: remember that the power is , so .
If we use the quantities from the previous trial at week 4 as guesses for  and , the necessary sample
size per arm is estimated at 222.

π̂

δ

σ

n =
2 ( +σ2 Z1−α Z1−β)2

δ2

1 − β β = 10%

δ = −2 σ = 6.5



The right choice for the standard deviation and expected effect size can be debated due to design differences
between the proof of concept trial and the confirmatory trial. One could also consider powering the study for the
minimum relevant effect from either a clinical or a business perspective.

# Assumptions:
delta <- -2
sigma <- 6.5
power <- 0.9
beta <- 1 - power
alpha <- 0.025

# Sample size computation
sample_size <- 2 * sigma^2 * (qnorm(1 - alpha) + qnorm(1 - beta))^2/delta^2
ceiling(sample_size)

## [1] 222

The right choice for the standard deviation and expected effect size can be debated due to design differences
between the proof of concept trial and the confirmatory trial. One could also consider powering the study for the
minimum relevant effect from either a clinical or a business perspective.

Exercise 2: calculate assurance for the confirmatory
trial
Use a normal distribution with mean 2 and standard deviation 2 as prior.

1. Create a plot with sample size (from 1 to 1000) on the x-axis and PoS on the y-axis. Include first one curve
displaying power as a function of the sample size, and second one curve displaying assurance as a function
of sample size.
Hint: first create two  functions that return power and assurance as a function of sample size using formulas
from slides #31 and #13 (if you need help, see last slide in this presentation).



# Hint
power_fun <- function(n, delta = 2, sigma = 6.5, alpha = 0.025) {
    # TODO from slide n°13
}
assurance_fun <- function(n, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.02
5) {
    # TODO from slide n°31
}

# Coding tip: use the apply function to quickly obtain the value of a 
#             function for a sequence of input values
n <- seq(0,1000,1)
results <- sapply(n, _yourfunction_, ...) #where you can use ... to 
#                                           give further arguments 
#                                           to _yourfunction_

power_fun <- function(n, delta = 2, sigma = 6.5, alpha = 0.025) {
    pwr <- pnorm(qnorm(alpha) + (sqrt(n) * delta)/(sqrt(2) * sigma))
    return(pwr)
}
assurance_fun <- function(n, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.02
5) {
    tau <- sigma * sqrt(2/n)
    asrc <- pnorm((-qnorm(1 - alpha) * tau + mu_delta)/(sqrt(sigma_delta^2 + tau^2)))
    return(asrc)
}

# Ploting the results
n <- seq(1, 1000, 1)
power_res <- sapply(n, power_fun)
assurance_res <- sapply(n, assurance_fun)
plot(x = n, power_res, xlab = "Sample size per arm", ylab = "PoS", type = "l", col = 
"red3",
    ylim = c(0, 1), lwd = 1.5)
lines(x = n, assurance_res, type = "l", col = "dodgerblue", ylim = c(0, 1), lty = "da
shed",
    lwd = 1.5)
legend("bottomright", legend = c("Power", "Assurance"), col = c("red3", "dodgerblu
e"),
    lty = c("solid", "dashed"), lwd = 1.5)



2. What is the assurance for the sample size you calculated in Exercise 1 ? Would you choose a different sample
size based on assurance?

assurance_fun(n = 222)

## [1] 0.6472213

3. What is the upper bound for assurance for this example? What is the interpretation of this upper bound?

assurance_fun(n = 1000)
assurance_fun(n = 10^6)
assurance_fun(n = 10^10)
assurance_fun(n = 10^200)

## [1] 0.7604324
## [1] 0.8391526
## [1] 0.8413229
## [1] 0.8413447

The upper bound can be obtained by either inserting a very large sample size in your assurance function
(approximation) or precisely by integrating the region under the prior where the effect is greater than 0.



n_log <- exp(seq(1,15,0.25))
power_res <- sapply(n_log, power_fun)
assurance_res <- sapply(n_log, assurance_fun)

library(ggplot2)
ggplot(cbind.data.frame(n_log, power_res, assurance_res), aes(x=n_log)) + 
  geom_line(aes(y=power_res, linetype="Power", color="Power")) +
  geom_line(aes(y=assurance_res, linetype="Assurance", color="Assurance")) +
  scale_linetype_manual(name="", values=c("dashed", "solid")) +
  scale_color_manual(name="", values=c("dodgerblue", "red3")) +
  ylab("PoS") +
  xlab("Sample size per arm (log scale)") +
  ylim(c(0,1)) +
  theme_bw() +
  scale_x_log10() +
  annotation_logticks(sides = "b")

## [1] 0.8413447

The minimum value that results in a significant p-value is 

## [1] 1.209205

Exercise 3: adding a requirement on the minimum
relevant effect to assurance

1. To the plot from Exercise 2, add a line for assurance where success is declared if the p-value is significant
AND the effect estimate is at least .
Hint: modify the formula from slide #31

1.21

1.5



For this version of assurance we declare success if

The formula from Slide 31 can be modified as follows:

assurance_fun_both <- function(n, mre = 1.5, mu_delta = 2, sigma_delta = 2, sigma = 
6.5,
    alpha = 0.025) {
    tau <- sigma * sqrt(2/n)
    asrc <- pnorm((-max(qnorm(1 - alpha) * tau, mre) + mu_delta)/(sqrt(sigma_delta^2 
+
        tau^2)))
    return(asrc)
}

n <- seq(1, 1000, 1)
power_res <- sapply(n, power_fun)
assurance_res <- sapply(n, assurance_fun)
assurance_res_both <- sapply(n, assurance_fun_both)

plot(x = n, power_res, xlab = "Sample size per arm", ylab = "PoS", type = "l", col = 
"red3",
    ylim = c(0, 1), lwd = 1.5)
lines(x = n, assurance_res, type = "l", col = "dodgerblue", ylim = c(0, 1), lty = "da
shed",
    lwd = 1.5)
lines(x = n, assurance_res_both, type = "l", col = "orange", ylim = c(0, 1), lty = "d
otted",
    lwd = 1.5)
legend("bottomright", legend = c("Power", "Assurance - pval", "Assurance - pval & eff
ect"),
    col = c("red3", "dodgerblue", "orange"), lty = c("solid", "dashed", "dotted"),
    lwd = 1.5)
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P [ − > max( τ, 1.5)] = Φȳ1 ȳ0 z1−α
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2. What is the upper bound for this version of assurance ?

assurance_fun_both(n = 10^8, mre = 1.5)

## [1] 0.5987063

1 - pnorm(1.5, mean = 2, sd = 2)

## [1] 0.5987063

3. Also add to the plot a line for assurance where success is declared in case of a significant p-value for
evaluating the null hypothesis that the effect equals 1.5
Hint: modify the formula from slide #31

For this version of assurance, the critical value that needs to be exceeded is . Hence the formula
for the assurance becomes:

assurance_fun_mre <- function(n, mre = 1.5, mu_delta = 2, sigma_delta = 2, sigma = 6.
5,
    alpha = 0.025) {
    tau <- sigma * sqrt(2/n)
    asrc <- pnorm((-(qnorm(1 - alpha) * tau + mre) + mu_delta)/(sqrt(sigma_delta^2 +
        tau^2)))
    return(asrc)
}
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n <- seq(1, 1000, 1)
power_res <- sapply(n, power_fun)
power_res_1.5 <- sapply(n, power_fun, delta = 1.5)
assurance_res <- sapply(n, assurance_fun)
assurance_res_1.5 <- sapply(n, assurance_fun_mre, mre = 1.5)

plot(x = n, power_res, xlab = "Sample size per arm", ylab = "PoS", type = "l", col = 
"red3",
    ylim = c(0, 1), lwd = 1.5)
lines(x = n, power_res_1.5, type = "l", col = "salmon", ylim = c(0, 1), lty = "dotte
d",
    lwd = 1.5)
lines(x = n, assurance_res, type = "l", col = "dodgerblue", ylim = c(0, 1), lty = "da
shed",
    lwd = 1.5)
lines(x = n, assurance_res_1.5, type = "l", col = "purple", ylim = c(0, 1), lty = "do
tdash",
    lwd = 1.5)
legend("bottomright", legend = c("Power - H1: d>2", "Power - H1: d>1.5", "Assurance - 
pval H1: d≠0",
    "Assurance - pval H1: d>1.5"), col = c("red3", "salmon", "dodgerblue", "purple"),
    lty = c("solid", "dotted", "dashed", "dotdash"), lwd = 1.5)

4. What is the upper bound for this version of assurance?

1 - pnorm(0, mean = 1.5, sd = 2)

## [1] 0.7733726

5. Which version of assurance do you prefer for the case study?

It is important that the success criterion for the trial matches the assurance.

For a large confirmatory trial, in practice a result is often considered acceptable when the p-value
corresponding to the null hypothesis of no effect is significant and the point estimate is above a minimum
relevant limit. This speaks in favor of the assurance from exercise 3.1. However, it would be important to



evaluate whether this type of success criterion does not result in too many false positive results as the point
estimate does not capture the variability around the estimate.

Assurance based on a p-value for the null hypothesis that the effect equals a minimum limit that needs to be
exceeded could be appropriate. Drawbacks are that:

it is hard to choose an appropriate effect size for the null hypothesis. In this example I chose the
minimum relevant effect quite high for illustrative purposes. It is not easy to choose a good null
hypothesis in this setting, as the effect in the null hypothesis needs to be large enough such that
rejecting the null hypothesis implies that the effect of the drug is meaningful, but at the same time it
should not include effect sizes that are meaningful as in those cases we would wish to conclude
efficacy (reject the null hypothesis).
designing a trial for such a null hypothesis results in much larger sample sizes such that the added
benefit of such a more rigorous success criterion needs to be weighed against the extra resources
required and the fact that more subjects need to be put at risk.

Bonus: what sample size would we need for the confirmatory trial if we wish to reject a null hypothesis that
the effect equals  and we assume the effect is  under the alternative and we require  power and wish
to control the false positive rate at  one-sided ?

Refer to slide #8:
we now have  and . Therefore we now need to ensure that

 resulting in the same formula for the sample size, where  is replaced by
.

Exercise 4: the posterior conditional failure and
success distributions for the case study

1. Write an  function that returns the prior from Exercise 2  for a given .
Hint: use the  function dnorm

prior_delta <- function(delta, mu = 2, sigma = 2) {
    return(dnorm(delta, mean = mu, sd = sigma))
}

2. Write an  function that returns the likelihood  (i.e. the power) as a function of  for
the confirmatory trial with a sample size of  patients per arm and a standard deviation of .

likelihood_success <- function(delta, n = 222, sigma = 6.5, alpha = 0.025) {
    tau <- sigma * sqrt(2/n)
    pwr <- pnorm(qnorm(alpha) + delta/tau)
    return(pwr)
}

3. Calculate the assurance for the confirmatory trial in case a sample size of  per arm is used and the
success criterion is a significant p-value (you can re-use the result from Exercise 2 if you did it with a sample
size of 222 per arm).
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assurance_fun <- function(n = 222, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha 
= 0.025) {
    tau <- sigma * sqrt(2/n)
    asrc <- pnorm((-qnorm(1 - alpha) * tau + mu_delta)/(sqrt(sigma_delta^2 + tau^2)))
    return(asrc)
}
assurance_222constant <- assurance_fun()

4. Use the results from steps 1-3 to create a plot of the posterior conditional success distribution.

posterior_csd <- function(delta, samplesize = 222) {
    prior_delta(delta) * likelihood_success(delta, n = samplesize)/assurance_fun(n = 
samplesize)
}

d <- seq(-5, 15, 0.1)
post_csd_res <- sapply(d, posterior_csd)

plot(x = d, post_csd_res, xlab = expression(delta), ylab = "Posterior conditional suc
cess distribution",
    type = "l", col = "darkgreen", lwd = 2)

5. Similarly, derive the posterior conditional failure distribution and add it to the plot.



posterior_csf <- function(delta, samplesize = 222) {
    prior_delta(delta) * (1 - likelihood_success(delta, n = samplesize))/(1 - assuran
ce_fun(n = samplesize))
}

post_csd_res <- sapply(d, posterior_csd)
post_csf_res <- sapply(d, posterior_csf)

plot(x = d, post_csd_res, xlab = expression(delta), ylab = "Posterior conditional dis
tribution",
    type = "l", col = "darkgreen", lwd = 2, xlim = c(-5, 15), ylim = c(0, 0.6), main 
= "Sample-size = 222")
lines(x = d, post_csf_res, xlab = expression(delta), type = "l", col = "red", lwd = 
2,
    lty = 2)
abline(v = 1.45, lty = 3)
legend("topright", legend = c("Success", "Failure"), col = c("darkgreen", "red"),
    lty = c("solid", "dashed"), lwd = 2)

6. Are you satisfied with the proposed design in its ability to distinguish between a drug that works and a drug
that doesn’t work?

Ideally the overlap between the two functions is small. In this case we can see that some successes are
concluded when the true effect is below  and some failures are concluded despite the effect being above

. However, the overlap between the two functions is not very large and may be acceptable.
1.5

1.5



post_csd_res <- sapply(d, posterior_csd, samplesize = 2000)
post_csf_res <- sapply(d, posterior_csf, samplesize = 2000)

plot(x = d, post_csd_res, xlab = expression(delta), ylab = "Posterior conditional dis
tribution",
    type = "l", col = "darkgreen", lwd = 2, xlim = c(-5, 15), ylim = c(0, 0.6), main 
= "Sample-size = 2000")
lines(x = d, post_csf_res, xlab = expression(delta), type = "l", col = "red", lwd = 
2,
    lty = 2)
abline(v = 0.6, lty = 3)
legend("topright", legend = c("Success", "Failure"), col = c("darkgreen", "red"),
    lty = c("solid", "dashed"), lwd = 2)

The code below gives the posterior conditional success and failure distributions for assurance when success
is declared if the point estimate is above the minimum relevant effect. The curves are quite similar, but shifted
slightly to the right.



pwr2 <- function(sigma, delta, alpha, n, mre) {
    pnorm((-max(mre, qnorm(1 - alpha) * sigma * sqrt(2/n)) + delta)/(sigma * sqrt(2/
n)))
}

pcsd2 <- function(delta, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.025,
    beta = 0.1, n = 222, mre = 1.5) {
    prior_delta(delta, mu_delta, sigma_delta) * pwr2(delta, sigma = sigma, alpha = al
pha,
        n = n, mre = mre)/assurance_fun_both(sigma = sigma, alpha = alpha, n = n,
        mu_delta = mu_delta, sigma_delta = sigma_delta, mre = mre)
}

pcfd2 <- function(delta, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.025,
    beta = 0.1, n = 222, mre = 1.5) {
    prior_delta(delta, mu_delta, sigma_delta) * (1 - pwr2(delta, sigma = sigma, alpha 
= alpha,
        n = n, mre = mre))/(1 - assurance_fun_both(sigma = sigma, alpha = alpha,
        n = n, mu_delta = mu_delta, sigma_delta = sigma_delta, mre = mre))
}

success_res2 <- sapply(d, pcsd2)
failure_res2 <- sapply(d, pcfd2)

plot(d, success_res2, type = "l", col = "darkgreen", lwd = 2, xlab = "delta", ylab = 
"Density",
    ylim = c(0, 0.5))
lines(d, failure_res2, col = "red", lwd = 2)
abline(v = 1.45, lty = 3)

Exercise 5
1. Compute the probability of a true success for the confirmatory trial where a significant p-value is considered

the criterion for success (for the null hypothesis of no effect).
Hint: use the function pmvnorm  from the package mvtnorm



## [1] 0.6465897
## attr(,"error")
## [1] 1e-15
## attr(,"msg")
## [1] "Normal Completion"

The probability of a true success equals . This is very similar to the assurance calculated earlier
.

The difference is small because the power for an effect below  is at most  and the prior probability of
an effect below  is small (0.159).

2. Compare this probability to the assurance you calculated earlier.

## [1] 0.5944054

The probability of a true success equals . This is a bit lower than the assurance using a success
criterion requiring a significant p-value and a point estimate above 1.5, which is .

3. Compute the probability of a true success for the confirmatory trial where a significant p-value as well as a
point estimate above 1.5 is considered the criterion for success.

4. Compare your result from step 3 to the same version of assurance where we do not require a true success.

Exercise 3
Program a sampling algorithm to sample from the exponential distribution with parameter  thanks to the inverse
transform function (starting from the R  function runif ).
Compare the distribution of your sample to the theoretical target distribution (thanks to the built-in R  function
dexp ).

Try out several values for the  parameter of the exponential distribution (e.g. 1, 10, 0.78, …) to check that the
algorithm is indeed working.

generate_exp <- function(n, lambda) {
    u <- runif(n)
    x <- -1/lambda * log(1 - u)
    return(x)
}

n_samp <- 1000
my_samp <- generate_exp(n = n_samp, lambda = 10)
hist(my_samp, probability = TRUE, n = 25)
curve(dexp(x, rate = 10), from = 0, to = max(my_samp), col = "red", lty = 2, add = TRUE)
legend("topright", c("Inverse transform", "R dexp()"), lty = c(1, 2), col = c("black",
    "red"))

0.6466

0.6472

0 2.5%

0

0.5503

0.5944

λ

λ



Exercise 4
Using the historical example, program an independent Metropolis-Hastings algorithm to estimate the posterior
distribution of parameter  (i.e. the probability of having a girl for a birth). The prior distribution on  will be used as
the instrumental proposal, and we will start by using a uniform prior on . We will consider the  births
observed in Paris between 1745 and 1770, of which  were girls.

1. Program a function that computes the numerator of the posterior density, which can be written
 with  and  (plan for a boolean argument that will allow to

return — or not — the logarithm of the posterior instead).

post_num_hist <- function(theta, log = FALSE) {

    n <- 493472  # the data
    S <- 241945  # the data

    if (log) {
        num <- S * log(theta) + (n - S) * log(1 - theta)  # the **log** numerator of 
the posterior
    } else {
        num <- theta^S * (1 - theta)^(n - S)  # the numerator of the posterior
    }
    return(num)  # the output of the function
}

post_num_hist(0.2, log = TRUE)

## [1] -445522.1

post_num_hist(0.6, log = TRUE)

## [1] -354063.6

θ θ

θ 493, 472

241, 945

p(θ|n, S) ∝ (1 − θθS )n−S S = 241 945 n = 493 472



2. Program the corresponding Metropolis-Hastings algorithm, returning a vector of size  sampled according to
the posterior distribution. Also, have the algorithm return the vector of acceptance probabilities . What
happens if this acceptance probability is NOT computed on the  scale ?

myMH <- function(niter, post_num) {

    x_save <- numeric(length = niter)  #create a vector of 0s 
    # of length niter to store the sampled values

    alpha <- numeric(length = niter)  #create a vector of 0s 
    # of length niter to store the acceptance probabilities

    # initialise x0
    x <- runif(n = 1, min = 0, max = 1)

    # acceptance-rejection loop
    for (t in 1:niter) {
        # sample y from the proposal (here uniform prior)
        y <- runif(n = 1, min = 0, max = 1)
        # compute the acceptance-rejection probability
        alpha[t] <- min(1, exp(post_num(y, log = TRUE) - post_num(x, log = TRUE)))
        # accept or reject
        u <- runif(1)
        if (u <= alpha[t]) {
            x_save[t] <- y
        } else {
            x_save[t] <- x
        }

        # update the current value
        x <- x_save[t]
    }
    return(list(theta = x_save, alpha = alpha))
}

3. Compare the posterior density obtained with this Metropolis-Hastings algorithm over 2000 iterations to the
theoretical one (the theoretical density can be obtained with the R  function
dbeta(x, 241945 + 1, 251527 + 1)  and represented with the R  function
curve(..., from = 0, to = 1, n = 10000) ). Mindfully discard the first 500 iterations of your Metropolis-

Hastings algorithm in order to reach the Markov chain convergence before constructing your Monte Carlo
sample. Comment those results, especially in light of the acceptance probabilities computed throughout the
algorithm, as well as the different sampled values for .

n

α

log

θ



sampleMH <- myMH(2000, post_num = post_num_hist)

par(mfrow = c(2, 2))
plot(density(sampleMH$theta[-c(1:500)]), col = "red", xlim = c(0, 1), ylab = "Posteri
or probability density",
    xlab = expression(theta), main = "")
curve(dbeta(x, 241945 + 1, 251527 + 1), from = 0, to = 1, n = 10000, add = TRUE)
legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)

plot(density(sampleMH$theta[-c(1:500)]), col = "red", ylab = "Posterior probability d
ensity",
    xlab = expression(theta), main = "Zoom")
curve(dbeta(x, 241945 + 1, 251527 + 1), from = 0, to = 1, n = 10000, add = TRUE)
legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)

plot(sampleMH$alpha, type = "h", xlab = "Iteration", ylab = "Acceptance Probability",
    ylim = c(0, 1), col = "springgreen")
plot(sampleMH$theta, type = "l", xlab = "Iteration", ylab = expression(paste("Sampled 
value for ",
    theta)), ylim = c(0, 1))

4. Now imagine we only observe  births, among which  girls, and use a  distribution
as prior. Program the corresponding M-H algorithm and study the new results (one can do  iterations
of this new M-H algorithm for instance, again mindfully discarding the first 500 iterations).

100 49 Beta(α = 3, β = 3)

10, 000



post_num_beta <- function(theta, a = 3, b = 3, log = TRUE) {

    n <- 100  #number of trials (births)
    S <- 49  #number of success (feminine births)

    if (log) {
        num <- (a + S - 1) * (log(theta)) + (b + n - S - 1) * log(1 - theta)
    } else {
        num <- theta^(a + S - 1) * (1 - theta)^(b + n - S - 1)
    }
    return(num)
}

myMH_betaprior <- function(niter, post_num, a = 3, b = 3) {

    x_save <- numeric(length = niter)  # create a vector of 0s of length niter to sto
re the sampled values
    alpha <- numeric(length = niter)  # create a vector of 0s of length niter to stor
e the acceptance probabilities

    # initialise x
    x <- runif(n = 1, min = 0, max = 1)

    # acceptance-rejection loop
    for (t in 1:niter) {

        # sample a value from the proposal (beta prior)
        y <- rbeta(n = 1, a, b)

        # compute acceptance-rejection probability
        alpha[t] <- min(1, exp(post_num(y, a = a, b = b, log = TRUE) - post_num(x,
            a = a, b = b, log = TRUE) + dbeta(x, a, b, log = TRUE) - dbeta(y, a,
            b, log = TRUE)))
        # acceptance-rejection step
        u <- runif(1)
        if (u <= alpha[t]) {
            x <- y  # acceptance of y as new current value
        }
        # saving the current value of x
        x_save[t] <- x
    }
    return(list(theta = x_save, alpha = alpha))
}

sampleMH <- myMH_betaprior(10000, post_num = post_num_beta)

par(mfrow = c(2, 2))
plot(density(sampleMH$theta[-c(1:500)]), col = "red", xlim = c(0, 1), ylab = "Posteri
or probability density",
    xlab = expression(theta), main = "")
curve(dbeta(x, 49 + 1, 51 + 1), from = 0, to = 1, add = TRUE)
legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)



plot.new()
plot(sampleMH$alpha, type = "h", xlab = "Iteration", ylab = "Acceptance probability",
    ylim = c(0, 1), col = "springgreen")
plot(sampleMH$theta, type = "l", xlab = "Iteration", ylab = expression(paste("Sampled 
value for ",
    theta)), ylim = c(0, 1))

5. Using the data from the historical example and with a  prior, program a random-walk
Metropolis-Hastings algorithm (with a Gaussian random step of sd=0.02  for instance). This means that the
proposal is going to change, and is now going to depend on the previous value.
Once again, study the results obtained this way (one can change the width of the random step).

Beta(α = 3, β = 3)



post_num_beta_hist <- function(theta, a = 3, b = 3, log = TRUE) {

    n <- 493472  #number of trials (births)
    S <- 241945  #number of success (feminine births)

    if (log) {
        num <- (a + S - 1) * log(theta) + (b + n - S - 1) * log(1 - theta)
    } else {
        num <- theta^(a + S - 1) * (1 - theta)^(b + n - S - 1)
    }
    return(num)
}

myMH_betaprior_randomwalk <- function(niter, post_num, a = 3, b = 3) {

    x_save <- numeric(length = niter)  # create a vector of 0s of length niter to sto
re the sampled values
    alpha <- numeric(length = niter)  # create a vector of 0s of length niter to stor
e the acceptance probabilities

    # initialise x0
    x <- runif(n = 1, min = 0, max = 1)

    # acceptance-rejection loop
    for (t in 1:niter) {
        # sample a value from the proposal (random walk)
        y <- rnorm(1, mean = x, sd = 0.02)

        # compute acceptance-rejection probability
        alpha[t] <- min(1, exp(post_num(y, a = a, b = b, log = TRUE) - post_num(x,
            a = a, b = b, log = TRUE)))

        # acceptance-rejection step
        u <- runif(1)
        if (u <= alpha[t]) {
            x <- y  # accept y and update current value
        }

        # save current value
        x_save[t] <- x
    }

    return(list(theta = x_save, alpha = alpha))
}

sampleMH <- myMH_betaprior_randomwalk(20000, post_num = post_num_beta_hist)

par(mfrow = c(2, 2))
plot(density(sampleMH$theta[-c(1:1000)]), col = "red", ylab = "Posterior probability 
density",
    xlab = expression(theta), main = "")
curve(dbeta(x, 241945 + 1, 251527 + 1), from = 0, to = 1, n = 10000, add = TRUE)



legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)
plot(sampleMH$alpha, type = "h", xlab = "Iteration", ylab = "Acceptance probability",
    ylim = c(0, 1), col = "springgreen")
plot(sampleMH$theta, type = "l", xlab = "Iteration", ylab = expression(paste("Sampled 
value for ",
    theta)), ylim = c(0, 1))
plot(sampleMH$theta, type = "l", xlab = "Iteration", main = "Zoom", ylab = expression
(paste("Sampled value for ",
    theta)), ylim = c(0.45, 0.55))

Exercise 5
The BUGS project (https://www.mrc-bsu.cam.ac.uk/software/bugs/) (Bayesian inference Using Gibbs Sampling) was
initiated in 1989 by the MRC (Medical Research Council) Biostatistical Unit at the University of Cambridge (United-
Kingdom) to develop a flexible and user-friendly software for Bayesian analysis of complex models through MCMC
algorithms. Its most famous and original implementation is WinBUGS , a clicking software available under Windows.
OpenBUGS  is an alternative implementation of WinBUGS  running on either Windows, Mac OS ou Linux. JAGS

(http://mcmc-jags.sourceforge.net/) (Just another Gibbs Sampler) is a different and newer implementation that also
relies on the BUGS  language. Finally, the STAN  (http://mc-stan.org/) software must also be mentionned, recently
developed et the Columbia Univeristy, ressemble BUGS  through its interface, but relies on innovative MCMC
approaches, such as Hamiltonian Monte Carlo, or variational Bayes approaches. A very useful resource is the JAGS
user manual (http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf).

To familiarise yourself with JAGS  (and its R  interface through the package rjags ), we will look here at the
posterior estimation of the mean and variance of observed data that we will model with a Gaussian distribution.

0. Start by loading the R  package rjags .

https://www.mrc-bsu.cam.ac.uk/software/bugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf


library(rjags)

A BUGS  model has 3 components:

the model: specified in an external text file ( .txt ) according to a specific BUGS  syntax
the data: a list containing each observation under a name matching the one used in the model specification
the initial values: (optional) a list containing the initial values for the various parameters to be estimated

1. Sample  observations from a Gaussian distribution with mean  and standard deviation 
using the R  function rnorm  and store it into an object called obs .

N <- 50  # the number of observations
obs <- rnorm(n = N, mean = 2, sd = 3)  # the (fake) observed data

2. Read the help of the rjags  package, then save a text file ( .txt ) the following code defining the BUGS
model:

# Model
model{

  # Likelihood
  for (i in 1:N){ 
    obs[i]~dnorm(mu,tau)
  }

  # Prior
  mu~dnorm(0,0.0001) # proper but very flat (so weakly informative)
  tau~dgamma(0.0001,0.0001) # proper, and weakly informative (conjugate for Gaussian)

  # Variables of interest
  sigma <- pow(tau, -0.5)
}

Each model specification file must start with the instruction model{  indicating JAGS  is about to receive a model
specification. Then the model must be set up, usually by cycling along the data with a for  loop. Here, we want to
declare N  observations, and each of them obs[i]  follows a Gaussian distribution (characterized with the
command dnorm ) of mean mu  and precision tau .

⚠  In BUGS , the Gaussian distribution is parameterized by its precision, which is simply the inverse of the variance
( ). Then, one needs to define the prior distribution for each parameter -– here both mu  and tau . For mu ,
we use a Gaussian prior with mean  and precision  (thus variance : this corresponds to a weakly
informative prior quite spread out given the scale of our data. For tau  we use the conjugate prior for precision in a
Gaussian model, namely the Gamma distribution (with very small parameters, here again to remain the least
informative possible). Finally, we give a deterministic definition of the additional parameters of interest, here the
standard deviation sigma .

NB: ~  indicates probabilistic distribution definition of a random variable, while <-  indicates a deterministic
calculus definition.

3. With the R  function jags.model() , create a jags  object R .

N = 50 m = 2 s = 3

τ = 1/σ2

0 10−4 10, 000



myfirstjags <- jags.model("normalBUGSmodel.txt", data = list(obs = obs, N = length(ob
s)))

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 50
##    Unobserved stochastic nodes: 2
##    Total graph size: 58
## 
## Initializing model

4. With the R  function coda.samples() , generate a sample of size  from the posterior distributions for
the mean and standard deviation parameters.

res <- coda.samples(model = myfirstjags, variable.names = c("mu", "sigma"), n.iter = 
2000)

5. Study the output of the coda.samples()  R  function, and compute both the posterior mean and median
estimates for mu  and sigma . Give a credibility interval at 95% for both.

plot(res)

2, 000



res_sum <- summary(res)
res_sum

## 
## Iterations = 1:2000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 2000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##        Mean     SD Naive SE Time-series SE
## mu    1.551 0.4003 0.008952       0.008952
## sigma 2.830 0.2937 0.006567       0.006567
## 
## 2. Quantiles for each variable:
## 
##         2.5%   25%   50%   75% 97.5%
## mu    0.7381 1.290 1.551 1.826 2.324
## sigma 2.3084 2.624 2.814 3.012 3.455

res_sum$statistics["mu", "Mean"]

## [1] 1.551182

res_sum$statistics["sigma", "Mean"]

## [1] 2.830303

res_sum$quantiles["mu", "50%"]

## [1] 1.551426

res_sum$quantiles["sigma", "50%"]

## [1] 2.813886

res_sum$quantiles["mu", c(1, 5)]

##      2.5%     97.5% 
## 0.7380642 2.3236741

res_sum$quantiles["sigma", c(1, 5)]



##     2.5%    97.5% 
## 2.308398 3.455007

6. Load the coda  R  package. This package functions for convergence diagnostic and analysis of MCMC
algorithm outputs.

library(coda)

7. To diagnose the convergence of an MCMC algorithm, it is necessary to generate different Markov chains, with
different initial values. Recreate a new jags  object in R  and specify the use of 3 Markov chains with the
argument n.chains , and initialize mu  at  and tau  at  respectively with the
argument inits  (ProTip: use a list  of list , one for each chain).

myjags2 <- jags.model("normalBUGSmodel.txt", data = list(obs = obs, N = N), n.chains 
= 3,
    inits = list(list(mu = 0, tau = 1), list(mu = -10, tau = 1/100), list(mu = 100,
        tau = 1/10)))

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 50
##    Unobserved stochastic nodes: 2
##    Total graph size: 58
## 
## Initializing model

res2 <- coda.samples(model = myjags2, variable.names = c("mu", "sigma"), n.iter = 100
0)
plot(res2)

0, −10, 100 1, 0.01, 0.1



8. With the R  function gelman.plot() , plot the Gelman-Rubin statistic.

gelman.plot(res2)

9. With the R  functions autocorr.plot()  and acfplot()  evaluate the autocorrelation of the studied
parameters.



acfplot(res2)

par(mfrow = c(3, 2))
autocorr.plot(res2, ask = FALSE, auto.layout = FALSE)

10. With the R  function cumuplot()  evaluate the running quantiles of the studied parameters. How can you
interpret them ?



par(mfrow = c(3, 2))
cumuplot(res2, ask = FALSE, auto.layout = FALSE)

Each row of the above graph is a different chain. The cumulative quantiles are indeed stable after the first few
iterations in all chains.

11. With the function hdi()  from the R  package HDInterval , provide highest densitity posterior credibility
intervals at 95%, and compare them to those obtained with the % and % quantiles.

hdCI <- HDInterval::hdi(res2)
hdCI

##              mu    sigma
## lower 0.8008923 2.322298
## upper 2.4006651 3.448734
## attr(,"credMass")
## [1] 0.95

symCI <- summary(res2)$quantiles[, c(1, 5)]
symCI

2.5 97.5



##            2.5%    97.5%
## mu    0.7641452 2.363983
## sigma 2.3400910 3.477797

symCI[, 2] - symCI[, 1]

##       mu    sigma 
## 1.599838 1.137706

hdCI[2, ] - hdCI[1, ]

##       mu    sigma 
## 1.599773 1.126436

Exercise 6
The randomized clinical trial EOLIA  evaluated a new treatment for severe acute respiratory distress syndrome
(severe ARDS) by comparing the mortality rate after 60 days among 249 patients randomized between a control
group (receiving conventional treatment, i.e. mechanical ventilation) and a treatment group receiving extracorporeal
membrane oxygenation (ECMO) — the new treatment studied. A frequentist analysis of the data concluded to a
Relative Risk of death of  in the ECMO group compared to controls (in Intention to Treat), with

 and the associated p-value of .

Goligher et al. (2019)  performed a Bayesian re-analysis of these data, further exploring the evidence and how it
can be quantified and summarized with a Bayesian approach.

Observed data from the EOLIA trial

Control ECMO

 observed 125 124

number of deceased at 60 days 57 44

1. Write the Bayesian model used by Goligher et al. (2019).

I) Question of interest:
Is the Relative Risk of death under ECMO compared to the conventional mechanical treatment less than one ?

II) Sampling model:
Let  be the number of death in the control group, and  the number of death in the ECMO group

III) Priors:

1

0.76

C = [0.55, 1.04]I95% 0.09

2

n

Zcontrol Zecmo

∼ Binomial( , 125)Zcontrol pc

∼ Binomial(RR × , 124)Zecmo pc



NB:  has approximately a standard deviation of 10 (cf Table 1 of Goligher et al., 2019)
NB: One can also define a sampling model at the individual level:
Let  be a binary variable indicating whether the patient  from the control group died before 60 days,
and  a similar variable for patient from the ecmo group.

2. Write the corresponding BUGS model, and save it into a .txt  file (for instance called
goligherBUGSmodel.txt )

As we have seen above, there are two equivalent ways of defining the sampling model:
either at the population level with a Binomial likelihood,
or at the individual level with a Bernoulli likelihood

# Population model
model{

  # Sampling model
  zcontrol~dbin(pc, ncontrol)
  zecmo~dbin(RR*pc, necmo)

  # Prior
  logRR~dunif(-17, 17) # SD is approximately 10
  pc~dunif(0,1) #probability of death in the control group

  # Re-parameterizations
  RR <- exp(logRR)
  ARR <- pc - RR*pc
}

∼pc U[0,1]

log(RR) ∼ U[−17,17]

U[−17,17]

Ycontroli i

Yecmoi

Bernoulli( )Ycontroli ∼iid pc

Bernoulli(RR × )Yecmoi
∼iid pc



# Individual model
model{

  # Sampling model
  for (i in 1:ncontrol){
    ycontrol[i]~dbern(pc)
  }
  for (i in 1:necmo){
    yecmo[i]~dbern(RR*pc)
  }

  # Prior
  logRR~dunif(-17, 17) # SD is approximately 10
  pc~dunif(0,1) #probability of death in the control group

  # Re-parameterizations
  RR <- exp(logRR)
  ARR <- pc - RR*pc
}

3. First create two binary data vectors ycontrol  and yecmo  (or ycontrol  and yecmo  that are either 1  or
0 , using the rep()  R function if you prefer the individual model), to encode the observations from the data

table above. Then uses the jags.model()  and coda.samples()  to replicate the estimation from Goligher
et al. (2019) (ProTip: use the function window()  to remove the burn-in observation from the output of the
coda.samples  function.)

#Individual data
ycontrol <- c(rep(0, 125-57), rep(1, 57))
yecmo <- c(rep(0, 124-44), rep(1, 44))

#sampling
library(rjags)
goligher_jags_indiv <- jags.model(file = "goligherBUGSmodel_indiv.txt", 
                                  data = list("ycontrol" =  ycontrol, 
                                              "ncontrol" = length(ycontrol),
                                              "yecmo" =  yecmo, 
                                              "necmo" = length(yecmo)
                                              ), 
                                  n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 249
##    Unobserved stochastic nodes: 2
##    Total graph size: 260
## 
## Initializing model



res_goligher_indiv <- coda.samples(model = goligher_jags_indiv, 
                                       variable.names = c('pc', 'RR', 'ARR'), 
                                       n.iter = 40000)

#postprocessing
res_goligher_burnt_indiv <- window(res_goligher_indiv, start=21001) # remove burn-in 
for Markov chain convergence 
#NB: by default coda.samples() performs 1000 first burnin iterations that are automat
ically removed from the output but till indexed.

#Population data
zcontrol <- 57
zecmo <- 44
#sampling
goligher_jags_pop <- jags.model(file = "goligherBUGSmodel_pop.txt", 
                                  data = list("zcontrol" =  zcontrol, 
                                              "ncontrol" = 125,
                                              "zecmo" =  zecmo, 
                                              "necmo" = 124
                                              ), 
                                  n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 2
##    Unobserved stochastic nodes: 2
##    Total graph size: 13
## 
## Initializing model

res_goligher_pop <- coda.samples(model = goligher_jags_pop, 
                                       variable.names = c('pc', 'RR', 'ARR'), 
                                       n.iter = 40000)

#post-processing
res_goligher_burnt_pop <- window(res_goligher_pop, start=21001) # remove burn-in for 
Markov chain convergence
#NB: by default coda.samples() performs 1000 first burnin iterations that are automat
ically removed from the output but till indexed.

4. Check the convergence, and then comment the estimate results (ProTip: look at the effective sample size
with the effectiveSize()  R  function).

effectiveSize(res_goligher_burnt_pop)



##      ARR       RR       pc 
## 14853.12 15950.00 15473.22

plot(res_goligher_burnt_pop)

gelman.plot(res_goligher_burnt_pop)

acfplot(res_goligher_burnt_pop)



par(mfrow=c(3, 2))
cumuplot(res_goligher_burnt_pop, ask=FALSE, auto.layout = FALSE)

par(mfrow=c(1, 1))



summary(res_goligher_burnt_pop)

## 
## Iterations = 21001:41000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 20000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##       Mean      SD  Naive SE Time-series SE
## ARR 0.1055 0.06114 0.0002496      0.0005018
## RR  0.7765 0.12121 0.0004948      0.0009607
## pc  0.4574 0.04394 0.0001794      0.0003534
## 
## 2. Quantiles for each variable:
## 
##         2.5%     25%    50%    75%  97.5%
## ARR -0.01399 0.06431 0.1057 0.1467 0.2251
## RR   0.56167 0.69150 0.7685 0.8530 1.0354
## pc   0.37243 0.42739 0.4570 0.4869 0.5445

summary(res_goligher_burnt_indiv)

## 
## Iterations = 21001:41000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 20000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##       Mean      SD  Naive SE Time-series SE
## ARR 0.1047 0.06101 0.0002491      0.0004922
## RR  0.7782 0.12125 0.0004950      0.0009377
## pc  0.4568 0.04402 0.0001797      0.0003423
## 
## 2. Quantiles for each variable:
## 
##         2.5%    25%    50%    75%  97.5%
## ARR -0.01605 0.0636 0.1049 0.1459 0.2236
## RR   0.56355 0.6932 0.7700 0.8542 1.0405
## pc   0.37090 0.4271 0.4565 0.4864 0.5435

# shortest 95% Credibility interval:
HDInterval::hdi(res_goligher_burnt_pop) 



##               ARR       RR        pc
## lower -0.01260414 0.549213 0.3741914
## upper  0.22600990 1.018004 0.5458635
## attr(,"credMass")
## [1] 0.95

# posterior porbability of RR <1: (answering our question !)
head(res_goligher_burnt_pop[[1]]) # first chain

## Markov Chain Monte Carlo (MCMC) output:
## Start = 21001 
## End = 21007 
## Thinning interval = 1 
##             ARR        RR        pc
## [1,] 0.20817796 0.5750249 0.4898592
## [2,] 0.03752375 0.9127649 0.4301452
## [3,] 0.10727668 0.7738478 0.4743562
## [4,] 0.11097880 0.7533753 0.4499906
## [5,] 0.10170494 0.7839922 0.4708392
## [6,] 0.10166457 0.7707451 0.4434565
## [7,] 0.08500842 0.8135700 0.4559803

head(res_goligher_burnt_pop[[2]]) # second chain

## Markov Chain Monte Carlo (MCMC) output:
## Start = 21001 
## End = 21007 
## Thinning interval = 1 
##             ARR        RR        pc
## [1,] 0.12483693 0.7385170 0.4774189
## [2,] 0.15901162 0.6548356 0.4606837
## [3,] 0.08006603 0.8161768 0.4355599
## [4,] 0.12926126 0.7383633 0.4940487
## [5,] 0.11523005 0.7565067 0.4732371
## [6,] 0.11562887 0.7646998 0.4914099
## [7,] 0.11044151 0.7676415 0.4753065

mean(c(sapply(res_goligher_burnt_pop, "[", , "RR"))<1)

## [1] 0.9579833

5. Change to a more informative prior using a Gaussian distribution for the log(RR), centered on log(0.78) and
with a standard deviation of 0.15 in the log(RR) scale (i.e. a precision of ). Comment the results. Try out
other prior distributions.

1/(0.15^2)

## [1] 44.44444

≈ 45



 logRR~dnorm(log(0.78), 45)

Exercise 7
In 2014, Crins et al.  published a meta-analysis assessing the incidence of acute rejection (AR) with or without
Interleukin-2 receptor antagonists. In this exercise we will recreate this analysis.

0. Load the  package bayesmeta   and the data from Crins et al. (2014) with the R  command
data("CrinsEtAl2014") .

library(bayesmeta)
data(CrinsEtAl2014)

1. Play around with the companion shiny app at: https://rshiny.gwdg.de/apps/bayesmeta/
(https://rshiny.gwdg.de/apps/bayesmeta/).
If the website is unavailable, you can launch the app locally by running the 2 following commands from :

library("shiny")
install.packages("rhandsontable")
runUrl("http://www.gwdg.de/~croever/bayesmeta/bayesmeta-app.zip")

2. Directly in the  console now, using the escalc()  function from the package metafor , compute the
estimated log odds ratios from the 6 considered studies alongside their sampling variances (ProTip: read the
Measures for Dichotomous Variables section from the help of the escalc()  function). Check that those are
the same as the one on the online shiny app (ProTip: ‘sigma’ is the standard error, i.e. the square root of the
sampling variance vi )

library("metafor")
crins.es <- escalc(measure = "OR", ai = exp.AR.events, n1i = exp.total, ci = cont.AR.
events,
    n2i = cont.total, slab = publication, data = CrinsEtAl2014)
crins.es[, c("publication", "yi", "vi")]

publication yi vi

Heffron (2003) -2.3097026 0.3593718

Gibelli (2004) -0.4595323 0.3095760

Schuller (2005) -2.3025851 0.7750000

Ganschow (2005) -1.7578579 0.2078161

Spada (2006) -1.2584610 0.4121591

Gras (2008) -2.4178959 2.3372623

NB: Log-odds ratios are symmetric around zero and have a sampling distribution closer to the normal
distibution than the natural OR scale. For this reason, they are usually prefered for meta-analyses. Their
sample variance is then computed as the sum of the inverse of all the counts in the  associated
contingency table .
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3. Perform a random-effect meta-analysis of those data using the bayesmeta()  function from the  package
bayesmeta , within . Use a uniform prior on  for  and a Gaussian prior for  centered around  and

with a standard deviation of .

res_crins_bayesmeta <- bayesmeta(y = crins.es$yi, sigma = sqrt(crins.es$vi), labels = 
crins.es$publication,
    tau.prior = function(t) {
        dunif(t, max = 4)
    }, mu.prior = c(0, 4), interval.type = "central")
summary(res_crins_bayesmeta)

[0, 4] τ μ 0
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##  'bayesmeta' object.
## data (6 estimates):
##                          y     sigma
## Heffron (2003)  -2.3097026 0.5994763
## Gibelli (2004)  -0.4595323 0.5563956
## Schuller (2005) -2.3025851 0.8803408
## Ganschow (2005) -1.7578579 0.4558685
## Spada (2006)    -1.2584610 0.6419962
## Gras (2008)     -2.4178959 1.5288107
## 
## tau prior (proper):
## function(t) {
##         dunif(t, max = 4)
##     }
## <bytecode: 0x1202de748>
## 
## mu prior (proper):
## normal(mean=0, sd=4)
## 
## ML and MAP estimates:
##                    tau        mu
## ML joint     0.3258895 -1.578317
## ML marginal  0.4644136 -1.587347
## MAP joint    0.3244300 -1.569497
## MAP marginal 0.4644205 -1.576092
## 
## marginal posterior summary:
##                  tau         mu      theta
## mode      0.46442045 -1.5760916 -1.5656380
## median    0.61810119 -1.5866193 -1.5806176
## mean      0.73768542 -1.5935568 -1.5935568
## sd        0.56879971  0.4698241  1.0448965
## 95% lower 0.03724555 -2.5605641 -3.7989794
## 95% upper 2.22766946 -0.6704235  0.5580817
## 
## (quoted intervals are central, equal-tailed credible intervals.)
## 
## Bayes factors:
##             tau=0        mu=0
## actual  2.6800815 0.094852729
## minimum 0.7442665 0.008342187
## 
## relative heterogeneity I^2 (posterior median): 0.4718317

plot(res_crins_bayesmeta)





4. Write the corresponding random-effects Bayesian meta-analysis model (using math, not  – yet).

I) Question of interest:
Is the treatment (IL2RA) odds ratio for Acute Rejection events inferior to 1 ?
II) Sampling model:
Let  be the log-odds-ratio reported by the study  and  its sampling variance

III) Priors:

5. Use rjags  to estimate the same model, saving the BUGS model in a .txt  file (called
crinsBUGSmodel.txt  for instance).

yi i σ2
i

 ( , )yi ∼iid θi σ2
i

 (μ, )θi ∼iid τ2

μ ∼  (0, )42

τ ∼ U[0,4]



# Random-effects model for Crins et al. 2014 Acute Rejection meta-analysis
model{

  # Sampling model/likelihood
  for (i in 1:N){
    logOR[i]~dnorm(theta[i], precision.logOR[i])
    theta[i]~dnorm(mu, precision.tau)
  }

  # Priors
  mu~dnorm(0, 0.0625) # 1/16 = 0.0625
  tau~dunif(0, 4)

  # Re-parameterization
  for(i in 1:N){
    precision.logOR[i] <- pow(sigma[i], -2)
  }
  precision.tau <- pow(tau, -2)
  OR <- exp(mu)
}

# Sampling
library(rjags)
crins_jags_res <- jags.model(file = "crinsBUGSmodel.txt", data = list(logOR = crins.e
s$yi,
    sigma = sqrt(crins.es$vi), N = length(crins.es$yi)), n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 6
##    Unobserved stochastic nodes: 8
##    Total graph size: 34
## 
## Initializing model

res_crins_jags_res <- coda.samples(model = crins_jags_res, variable.names = c("mu",
    "tau"), n.iter = 20000)

# Postprocessing
res_crins_jags_res <- window(res_crins_jags_res, start = 5001)  # remove burn-in for 
Markov chain convergence
summary(res_crins_jags_res)



## 
## Iterations = 5001:21000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 16000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##       Mean     SD Naive SE Time-series SE
## mu  -1.594 0.4697 0.002144       0.004113
## tau  0.736 0.5689 0.002597       0.010966
## 
## 2. Quantiles for each variable:
## 
##         2.5%     25%     50%     75%   97.5%
## mu  -2.56996 -1.8529 -1.5882 -1.3233 -0.6707
## tau  0.03152  0.3302  0.6206  0.9893  2.2196

HDInterval::hdi(res_crins_jags_res)

##               mu          tau
## lower -2.5421524 0.0002661476
## upper -0.6495073 1.8380900821
## attr(,"credMass")
## [1] 0.95

plot(res_crins_jags_res)



Exercise 8
We will now analyze data from the therapeutic clinical trial ALBI-ANRS 070 which compared the efficacy and
tolerance of 3 anti-retroviral strategies among HIV-1 positive patients naive of any anti-retroviral treatment .

1. Load the data from the albianrs_data.csv  available here  (/files/albianrs_data.csv) (ProTip: set
stringsAsFactors = TRUE  in read.delim() )

albi <- read.csv("albianrs_data.csv", stringsAsFactors = TRUE)
summary(albi)

##    PatientID     ViralLoad          CD4              CD4t       CD4sup500
##  ID112  :  7   Min.   :1.699   Min.   : 149.0   Min.   :3.494   No :558  
##  ID130  :  7   1st Qu.:2.042   1st Qu.: 377.0   1st Qu.:4.406   Yes:392  
##  ID139  :  7   Median :2.712   Median : 465.0   Median :4.644            
##  ID15   :  7   Mean   :2.907   Mean   : 491.8   Mean   :4.664            
##  ID156  :  7   3rd Qu.:3.692   3rd Qu.: 585.0   3rd Qu.:4.918            
##  ID163  :  7   Max.   :5.604   Max.   :1318.0   Max.   :6.025            
##  (Other):908                                                             
##    Treatment        Day             Visit      
##  AZT+3TC:315   Min.   :  0.00   Min.   :0.000  
##  d4t+ddI:322   1st Qu.: 29.00   1st Qu.:1.000  
##  switch :313   Median : 84.00   Median :3.000  
##                Mean   : 86.19   Mean   :2.946  
##                3rd Qu.:140.00   3rd Qu.:5.000  
##                Max.   :256.00   Max.   :6.000  
## 

6

http://127.0.0.1:7416/files/albianrs_data.csv
http://127.0.0.1:7416/files/albianrs_data.csv


The following variables are available:

PatientID  : Patient ID
ViralLoad : Plasma viral load
CD4 : CD4 T-cell lymphocites rate (in cell/mm )
CD4t : transformed CD4 T-cell lymphocites rate (in cell/mm ) ( CD4t  = CD4 )
CD4sup500 : binary variable indicating wether CD4 cell counts is above 500
Treatment  : Treatment group  (d4t + ddI),  (alternance) ou  (AZT + 3TC))
Day : Day of visit (since inclusion)
Visit : Visit number

Below is a quantitative summary of the characteristics of those variables.

Summary of the Albi-ANRS-
070 trial data

Variable N = 950

ViralLoad 2.71 (2.04, 3.69)

CD4 465 (377, 585)

CD4t 4.64 (4.41, 4.92)

CD4sup500 392 (41%)

Treatment

    AZT+3TC 315 (33%)

    d4t+ddI 322 (34%)

    switch 313 (33%)

Day 84 (29, 140)

Visit

    0 146 (15%)

    1 140 (15%)

    2 136 (14%)

    3 130 (14%)

    4 128 (13%)

    5 135 (14%)

    6 135 (14%)

 Median (IQR) or n (%)

NB: for simplicity, NA  values have been omitted.
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2. First, we want to explain the CD4 rate (as a transformed variable) from the viral load

a. Display CD4t  in scatterplot as a function of the ViralLoad  and color the points according to
Treatment .

library(ggplot2)
library(MetBrewer)
ggplot(albi, aes(y = CD4t, x = ViralLoad, color = Treatment)) + geom_point(alph
a = 0.7) +
    MetBrewer::scale_color_met_d("Java") + theme_bw()

b. Write down the Bayesian mathematical model corresponding to a linear regression of CD4t  against the
ViralLoad .

I) Question of interest:
How does the viral load linearly explains the (transformed) CD4 T-cell rate ?
II) Sampling model:
Let  be the  (transformed) CD4 T-cell rate  and  the corresponding observed viral load:

III) Priors:

c. Write the corresponding BUGS  model and save it in an external .txt  file.

CD4ti ith i VL2
i

CD4  ( + V , )ti ∼iid β0 β1 Li σ2

∼  (0, )β0 1002

∼  (0, )β1 1002

∼ InvGamma(0.001, 0.001)σ2



# Fixed effect linear regression Albi-ANRS
model{

  # Likelihood
  for (i in 1:N){ 
    CD4t[i]~dnorm(mu[i], tau)
    mu[i] <- beta0 + beta1*VL[i]
  }

  # Priors
  beta0~dnorm(0,0.0001) 
  beta1~dnorm(0,0.0001) # proper but very flat (vague: weakly informative)
  tau~dgamma(0.0001,0.0001) # proper but very flat (vague: weakly informative)

  # Parameters of interest
  sigma <- pow(tau, -0.5)
}

d. Create the corresponding jags  object in  and generate a Monte Carlo sample of size 1000 for the 3
parameters of interest

library(rjags)
albi_fixed_jags <- jags.model("albiBUGSmodel_fixed.txt", data = list(CD4t = alb
i$CD4t,
    N = nrow(albi), VL = albi$ViralLoad), n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 950
##    Unobserved stochastic nodes: 3
##    Total graph size: 3195
## 
## Initializing model

res_albi_fixed <- coda.samples(model = albi_fixed_jags, variable.names = c("bet
a0",
    "beta1", "sigma"), n.iter = 1000)

e. Before interpreting the results, check the convergence. What do you notice ?

library(coda)
plot(res_albi_fixed)



gelman.plot(res_albi_fixed)

acfplot(res_albi_fixed)

par(mfrow = c(3, 3))
cumuplot(res_albi_fixed, ask = FALSE, auto.layout = FALSE)



f. Using the window  function, remove the 500 first iterations as burn-in to reach Markov Chain
convergence to its stationary distribution (the posterior). Is it sufficient to solve convergence issues ?

res_albi_fixed2 <- window(res_albi_fixed, start = 501)

gelman.plot(res_albi_fixed2)

acfplot(res_albi_fixed2)



g. Check the effective sample size of the Monte Carlo sample with the effectiveSize()  function.
Reduuce auto-corrlation by increasing the thin  parameter to 10 in coda.samples . Check the impact
on the effective sample

`?`(effectiveSize)
effectiveSize(res_albi_fixed2)

##      beta0      beta1      sigma 
##   92.05785  104.15774 1451.33599

albi_fixed_jags <- jags.model("albiBUGSmodel_fixed.txt", data = list(CD4t = alb
i$CD4t,
    N = nrow(albi), VL = albi$ViralLoad), n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 950
##    Unobserved stochastic nodes: 3
##    Total graph size: 3195
## 
## Initializing model

res_albi_fixed_thin <- coda.samples(model = albi_fixed_jags, variable.names = c
("beta0",
    "beta1", "sigma"), n.iter = 10000, thin = 10)
res_albi_fixed_thin <- window(res_albi_fixed_thin, start = 5001)

effectiveSize(res_albi_fixed_thin)

##     beta0     beta1     sigma 
##  941.0284  930.6673 1500.0000

plot(res_albi_fixed_thin)



gelman.plot(res_albi_fixed_thin)

acfplot(res_albi_fixed_thin)



par(mfrow = c(3, 3))
cumuplot(res_albi_fixed_thin, ask = FALSE, auto.layout = FALSE)

summary(res_albi_fixed_thin)



## 
## Iterations = 5010:10000
## Thinning interval = 10 
## Number of chains = 3 
## Sample size per chain = 500 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##           Mean       SD  Naive SE Time-series SE
## beta0  4.79910 0.035987 0.0009292      0.0011900
## beta1 -0.04631 0.011725 0.0003027      0.0003885
## sigma  0.37439 0.008634 0.0002229      0.0002230
## 
## 2. Quantiles for each variable:
## 
##           2.5%      25%      50%      75%    97.5%
## beta0  4.72969  4.77404  4.79903  4.82228  4.87035
## beta1 -0.06942 -0.05399 -0.04618 -0.03851 -0.02305
## sigma  0.35768  0.36833  0.37447  0.37983  0.39153

3. Compare those results with a frequentist analysis.

summary(lm(CD4t ~ ViralLoad, data = albi))

## 
## Call:
## lm(formula = CD4t ~ ViralLoad, data = albi)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0828 -0.2604 -0.0197  0.2449  1.3856 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.79635    0.03696   129.8  < 2e-16 ***
## ViralLoad   -0.04564    0.01201    -3.8 0.000154 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3742 on 948 degrees of freedom
## Multiple R-squared:  0.01501,    Adjusted R-squared:  0.01397 
## F-statistic: 14.44 on 1 and 948 DF,  p-value: 0.0001537

4. Perform a Bayesian logistic regression to study the impact of the treatment on the binary outcome
CD4sup500  adjusted on the viral load. Once you have a first estimation, try adding an interaction between

the treatment and the viral load.



# Fixed effect logistic regression Albi-ANRS
model{

  # likelihood
  for (i in 1:N){
    CD4sup500[i] ~ dbern(proba[i])
    logit(proba[i]) <- beta0 + beta1*VL[i] + beta2*Tt_switch[i] + beta3*d4t[i] + beta
4*VL[i]*d4t[i] +         beta5*VL[i]*Tt_switch[i]
  }

  #Priors
  beta0~dnorm(0,0.0001)
  beta1~dnorm(0,0.0001)
  beta2~dnorm(0,0.0001)
  beta3~dnorm(0,0.0001)
  beta4~dnorm(0,0.0001)
  beta5~dnorm(0,0.0001)

  #ORs
  OR_VL <- exp(beta1)
  OR_switch <- exp(beta2)
  OR_d4t <- exp(beta3)
  OR_d4tVL <- exp(beta4)
  OR_swVL <- exp(beta5)
}

library(rjags)
albi_logis_jags <- jags.model("albiBUGSmodel_logistic_fixed.txt", data = list(CD4sup5
00 = 1 *
    (albi$CD4sup500 == "Yes"), N = nrow(albi), VL = albi$ViralLoad, d4t = 1 * (albi$T
reatment ==
    "d4t+ddI"), Tt_switch = 1 * (albi$Treatment == "switch")), n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 950
##    Unobserved stochastic nodes: 6
##    Total graph size: 7299
## 
## Initializing model

res_albi_logis <- coda.samples(model = albi_logis_jags, variable.names = c("OR_VL",
    "OR_switch", "OR_d4t", "OR_d4tVL", "OR_swVL"), n.iter = 10000)
res_albi_logis_burnt <- window(res_albi_logis, start = 5001)

plot(res_albi_logis_burnt)



summary(res_albi_logis_burnt)



## 
## Iterations = 5001:11000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 6000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##             Mean      SD  Naive SE Time-series SE
## OR_VL     0.7730 0.09434 0.0007032       0.007341
## OR_d4t    0.4320 0.24763 0.0018457       0.017199
## OR_d4tVL  1.4041 0.25103 0.0018711       0.017053
## OR_swVL   0.8952 0.15670 0.0011679       0.009811
## OR_switch 1.8019 0.89033 0.0066361       0.056547
## 
## 2. Quantiles for each variable:
## 
##             2.5%    25%    50%    75%  97.5%
## OR_VL     0.5973 0.7062 0.7697 0.8356 0.9631
## OR_d4t    0.1269 0.2573 0.3746 0.5457 1.0689
## OR_d4tVL  0.9833 1.2222 1.3802 1.5625 1.9562
## OR_swVL   0.6415 0.7813 0.8793 0.9906 1.2405
## OR_switch 0.6005 1.1606 1.6250 2.2632 3.9564

summary(glm(CD4sup500 == "Yes" ~ ViralLoad * Treatment, family = "binomial", data = a
lbi))

## 
## Call:
## glm(formula = CD4sup500 == "Yes" ~ ViralLoad * Treatment, family = "binomial", 
##     data = albi)
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  0.3279     0.3241   1.012   0.3117  
## ViralLoad                   -0.2556     0.1197  -2.135   0.0328 *
## Treatmentd4t+ddI            -0.9409     0.5338  -1.763   0.0779 .
## Treatmentswitch              0.4836     0.4807   1.006   0.3143  
## ViralLoad:Treatmentd4t+ddI   0.3084     0.1737   1.776   0.0757 .
## ViralLoad:Treatmentswitch   -0.1303     0.1690  -0.771   0.4409  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1287.8  on 949  degrees of freedom
## Residual deviance: 1270.9  on 944  degrees of freedom
## AIC: 1282.9
## 
## Number of Fisher Scoring iterations: 4



5. So far we have ignored the longitudinal nature of our measurements. Now, lets add a random intercept in our
logistic regression to account for the intra-patient correlation across visits.

ggplot(albi, aes(y = CD4, x = Day, color = Treatment)) + geom_hline(aes(yintercept = 
500),
    color = "grey35", linetype = 2) + geom_line(aes(group = PatientID), alpha = 0.3) 
+
    MetBrewer::scale_color_met_d("Java") + theme_bw()



  # Mixed effect logistic regression Albi-ANRS
  model{

    # likelihood
    for (i in 1:N){
      CD4sup500[i] ~ dbern(proba[i])
      logit(proba[i]) <- beta0 + b0[PAT_ID[i]] + beta1*VL[i] + beta2*Tt_switch[i] + b
eta3*d4t[i] + beta4*VL[i]*d4t[i] +         beta5*VL[i]*Tt_switch[i]
    }

    for (j in 1:Npat){
      b0[j]~dnorm(0, tau_b0)
    }

    #Priors
    beta0~dnorm(0,0.0001)
    beta1~dnorm(0,0.0001)
    beta2~dnorm(0,0.0001)
    beta3~dnorm(0,0.0001)
    beta4~dnorm(0,0.0001)
    beta5~dnorm(0,0.0001)
    tau_b0~dgamma(0.001,0.001)

    #ORs
    OR_VL <- exp(beta1)
    OR_switch <- exp(beta2)
    OR_d4t <- exp(beta3)
    OR_d4tVL <- exp(beta4)
    OR_swVL <- exp(beta5)
    sigma_RI <- pow(tau_b0, -0.5)
  }

library(rjags)
albi_logis_RI_jags <- jags.model("albiBUGSmodel_logistic_RandomInt.txt", data = list
(CD4sup500 = 1 *
    (albi$CD4sup500 == "Yes"), N = nrow(albi), VL = albi$ViralLoad, d4t = 1 * (albi$T
reatment ==
    "d4t+ddI"), Tt_switch = 1 * (albi$Treatment == "switch"), Npat = length(levels(al
bi$PatientID)),
    PAT_ID = as.numeric(albi$PatientID)), n.chains = 3)

## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 950
##    Unobserved stochastic nodes: 156
##    Total graph size: 8670
## 
## Initializing model



res_albi_logis_RI <- coda.samples(model = albi_logis_RI_jags, variable.names = c("OR_
VL",
    "OR_switch", "OR_d4t", "OR_d4tVL", "OR_swVL", "sigma_RI"), n.iter = 10000)
res_albi_logis_RI_burnt <- window(res_albi_logis_RI, start = 1001)

plot(res_albi_logis_RI_burnt)

summary(res_albi_logis_RI_burnt)



## 
## Iterations = 1001:11000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##             Mean      SD  Naive SE Time-series SE
## OR_VL     0.3679 0.07617 0.0004398       0.004945
## OR_d4t    0.5144 0.78926 0.0045568       0.043611
## OR_d4tVL  1.6955 0.54137 0.0031256       0.031301
## OR_swVL   1.0734 0.30843 0.0017807       0.017052
## OR_switch 1.6998 2.32537 0.0134255       0.113632
## sigma_RI  3.0083 0.33281 0.0019215       0.006757
## 
## 2. Quantiles for each variable:
## 
##              2.5%    25%    50%    75%  97.5%
## OR_VL     0.23064 0.3142 0.3649 0.4184 0.5244
## OR_d4t    0.02628 0.1239 0.2676 0.5840 2.5589
## OR_d4tVL  0.86958 1.3072 1.6214 1.9992 2.9425
## OR_swVL   0.61047 0.8511 1.0289 1.2454 1.7963
## OR_switch 0.13252 0.5353 1.0521 2.0599 6.7831
## sigma_RI  2.42497 2.7748 2.9842 3.2177 3.7184

library(lme4)
summary(lme4::glmer(CD4sup500 == "Yes" ~ (1 | PatientID) + ViralLoad * Treatment,
    family = "binomial", data = albi))



## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: CD4sup500 == "Yes" ~ (1 | PatientID) + ViralLoad * Treatment
##    Data: albi
## 
##      AIC      BIC   logLik deviance df.resid 
##    971.8   1005.8   -478.9    957.8      943 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9273 -0.4021 -0.1947  0.4119  3.9688 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  PatientID (Intercept) 7.317    2.705   
## Number of obs: 950, groups:  PatientID, 149
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 1.901075   0.689951   2.755  0.00586 ** 
## ViralLoad                  -0.955590   0.212725  -4.492 7.05e-06 ***
## Treatmentd4t+ddI           -1.177377   1.103321  -1.067  0.28592    
## Treatmentswitch             0.101717   1.000221   0.102  0.91900    
## ViralLoad:Treatmentd4t+ddI  0.439794   0.308828   1.424  0.15443    
## ViralLoad:Treatmentswitch   0.008679   0.291170   0.030  0.97622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) VirlLd Trt4+I Trtmnt VL:T4+
## ViralLoad   -0.780                            
## Trtmntd4t+I -0.616  0.473                     
## Trtmntswtch -0.679  0.521  0.423              
## VrlLd:Tr4+I  0.518 -0.657 -0.821 -0.355       
## VrlLd:Trtmn  0.549 -0.695 -0.341 -0.786  0.475

BONUS Exercise 9
In this exercise, we will first do a critical reading of the article from Kaguelidou et al. (2016) .

1. List the method elements that are missing from this article.

2. Read and discuss Table 3.

3. Load the R  package bcrm  and conduct an imaginary CRM trial interactive with the following code lines:
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library(bcrm)
sdose <- c(1, 1.5, 2, 2.5, 3)
dose.label <- c(5, 10, 15, 25, 40, 50, 60)
p.tox0 <- c(0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05)
bcrm(stop = list(nmax = 42), p.tox0 = p.tox0, dose = dose.label, ff = "power", prior.
alpha = list(1,
    1, 1), target.tox = 0.3, start = 1)
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