
Bayesian methods in medical research
Practicals solutions

Exercise 1
Exercise 2
Exercises on Probablity of Success

Exercise 1: propose a sample size for the confirmatory trial
Exercise 2: calculate assurance for the confirmatory trial
Exercise 3: adding a requirement on the minimum relevant effect to assurance
Exercise 4: the posterior conditional failure and success distributions for the case study
Exercise 5

Exercise 3
Exercise 4
Exercise 5
Exercise 6
Exercise 7
Exercise 8
BONUS Exercise 9

Exercise 1
In the context of the historical example, we want to elicitate a prior distribution from expert knowledge.

Now, let’s imagine we have 2 expert demographers, each giving their expert opinion about the value they think
plausible for (the probability of a birth being a girl rather than a boy).

We asks each of them to give values for which the probability of being lower would be respectively 10%, 25%,
50%, 75%, and 90%. First expert says:

while the second expert says:

0. First, let’s load the SHELF R package:

library(SHELF)

1. Using the fitdist() function from the SHELF package, estimate the parameter form the Beta
distribution that best fit each of those elicitations (Protip: have a look at the package intro vignette here
(https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.html)).

θ

θ

P(θ < 0.2) = 10%, P(θ < 0.4) = 25%, P(θ < 0.5) = 50%, P(θ < 0.6) = 75%, and P(θ < 0.8) = 90%

P(θ < 0.5) = 10%, P(θ < 0.6) = 25%, P(θ < 0.7) = 50%, P(θ < 0.8) = 75%, and P(θ < 0.9) = 90%

https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.html
https://cran.r-project.org/web/packages/SHELF/vignettes/SHELF-overview.html

v <- cbind(c(0.2, 0.4, 0.5, 0.6, 0.8),
 c(0.5, 0.6, 0.7, 0.8, 0.9)
)
p <- c(0.1, 0.25, 0.5, 0.75, 0.9)

expertPriors <- fitdist(vals = v, probs = p, lower = 0, upper = 1,
 expertnames=c("Expert 1", "Expert 2"))

expertPriors$Beta

shape1 shape2
Expert 1 3.634819 3.634835
Expert 2 6.047483 2.692690

2. Plot those two Beta prior distributions, along with the “linear pooling” of their 2 curves using the plotfit()
function from the SHELF package (Protip: use the lp = TRUE argument).

expertPlot <- plotfit(expertPriors, d = "beta", lp = TRUE, xl = 0, xu = 1,
 xlab = expression(theta), ylab = expression(pi(theta)),
 returnPlot = TRUE)

3. Derive a consensus Beta prior, by averaging each of both expert quantiles, and plot it.

v <- cbind(c(0.2, 0.4, 0.5, 0.6, 0.8),
 c(0.5, 0.6, 0.7, 0.8, 0.9),
 c(0.35, 0.5, 0.6, 0.7, 0.85))
p <- c(0.1, 0.25, 0.5, 0.75, 0.9)
consensusPrior <- fitdist(vals = v, probs = p, lower = 0, upper = 1,
 expertnames=c("Expert 1", "Expert 2", "Consensus"))

consensusPrior$Beta

shape1 shape2
Expert 1 3.634819 3.634835
Expert 2 6.047483 2.692690
Consensus 4.822237 3.288318

consensusPlot <- plotfit(consensusPrior, d = "beta", xl = 0, xu = 1,
 xlab = expression(theta), ylab = expression(pi(theta)),
 returnPlot = TRUE)

Exercise 2
1. The Law of Large Numbers and Monte-Carlo Estimation.

a. Write a function which generates a sample of observations from a Gaussian distribution (with
mean and standard deviation , i.e. a variance of) and that returns the variance estimate
over this sample (using the var() function).

var_est <- function(n = 10) {
 s <- rnorm(n, mean = 2, sd = 3)
 return(var(s))
}

b. Use the the Monte-Carlo method to estimate the variance of the distribution generating this sample, by
using multiple realizations (e.g. 5) of the standard-deviation estimate implemented above. Do it again
with 1,000 realizations, thus illustrating the law of large number convergence.

Monte-Carlo method
nMC <- 5 # Monte Carlo sample size
varMC <- numeric(nMC)
for (i in 1:nMC) {
 varMC[i] <- var_est(n = 10)
}
mean(varMC) # LLN estimate

10 iid

m = 2 s = 3 9

[1] 9.911995

nMC <- 1000 # Monte Carlo sample size
for (i in 1:nMC) {
 varMC[i] <- var_est(n = 10)
}
mean(varMC) # LLN estimate

[1] 9.048896

When the sample size increases, the estimator becomes more precise. This illustrates the Law of Large
Numbers.

2. Let’s now program a Monte-Carlo estimate of

a. Program a function roulette_coord which has only one argument ngrid (representing the number
of different outcomes possible on the roulette used) whose default is 35 , generating the two
coordinates of a point (between and) as a vector. Use the R function sample (whhose help page
is accessible through the command ?sample). The function will return the vector of the 2 coordinates
x and y generated this way.

roulette_coord <- function(ngrid = 35) {
 x <- sample(x = 0:ngrid, size = 1)
 y <- sample(x = 0:ngrid, size = 1)
 return(c(x, y))
}

b. Thanks to the formula to compute the distance bewteen 2 points: ,

program a function computing the distance to the origin (here has coordinates) that

checks if the computed distance is less than the unit disk radius (). This function, called for
instance inside_disk_fun() , will have 2 arguments: the vector p containing the coordinates of the
points on the one hand, and the integer ngrid on the other hand. It will return a boolean value
(TRUE or FALSE) indicating the point is inside the disk.

inside_disk_fun <- function(p, ngrid = 35) {
 d <- sqrt((p[1] - ngrid/2)^2 + (p[2] - ngrid/2)^2)
 return(d <= ngrid/2)
}

c. The surface ratio between the disk (radius) and the square (side length) is equal to . This
means that the probability of sampling a point inside the disk rather than outside is . Using this result,
a Monte Carlo estimate of can be implemented by computing the average number of time sampled
points fall inside the disk multiplied by 4. Program such a function with their only input being a boolean
vector of size (the number of sampled points), which is TRUE if the point is indeed inside the disk
and FALSE otherwise.

π ≈ 3, 1416

0 35

d = (− + (−x1 x2)2 y1 y2)2
‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

(,)
ngrid

2

ngrid

2

R =
ngrid

2

ngrid

2
ngrid π

4
π

4

π

n

piMC <- function(in_disk) {
 return(4 * mean(in_disk))
}

d. Using the code below, generate 200 points and plot the data generated. What is the corresponding
Monte Carlo estimate of ? Change npoints and comment. How could the estimation be improved
(ProTip: try ngrid <- 1000 and npoints <- 5000) ?

Grid size (resolution)
ngrid <- 35

Monte Carlo sample size
npoints <- 200

Points generation
pp <- matrix(NA, ncol = 2, nrow = npoints)
for (i in 1:nrow(pp)) {
 pp[i,] <- roulette_coord(ngrid)
}

Estimate pi
in_disk <- apply(X = pp, MARGIN = 1, FUN = inside_disk_fun, ngrid = ngrid)
piMC(in_disk)

Plot first we initialise an empty plot with the right size using argument
plot(x = pp[, 1], y = pp[, 2], xlim = c(0, ngrid), ylim = c(0, ngrid), axes =
0,
 xlab = "x", ylab = "y", type = "n")
we tick the x and then y axes from 1 to ngrid
axis(1, at = c(0:ngrid))
axis(2, at = c(0:ngrid))
we add a square around the plot
box()
we plot the grid (using dotted lines thanks to the argument `lty = 3`) onto
which the points are sample
for (i in 0:ngrid) {
 abline(h = i, lty = 3)
 abline(v = i, lty = 3)
}
we add the sampled points
lines(x = pp[, 1], y = pp[, 2], xlim = c(0, ngrid), ylim = c(0, ngrid), xlab =
"x",
 ylab = "y", type = "p", pch = 16)
we add the circle display
x.circle <- seq(0, ngrid, by = 0.1)
y.circle <- sqrt((ngrid/2)^2 - (x.circle - ngrid/2)^2)
lines(x.circle, y = y.circle + ngrid/2, col = "red")
lines(x.circle, y = -y.circle + ngrid/2, col = "red")
finally we color in red the points sampled inside the disk
lines(x = pp[in_disk, 1], y = pp[in_disk, 2], xlim = c(0, ngrid), ylim = c(0, n
grid),
 xlab = "x", ylab = "y", type = "p", pch = 16, col = "red", cex = 0.7)

π

When the sample size increase, the Monte Carlo estimator becomes more precise (LLN). However, if the
grid is too coarse, is underestimated (underestimating the disk surface by missing the bits near the
edge). Therefore, increasing the number of points on the grid also improves the precision of the Monte
Carlo estimation.

Exercises on Probablity of Success
Exercise 1: propose a sample size for the
confirmatory trial
Requirements/assumptions:

We would like to have a power of 90%
We would like to control the false positive rate at a one-sided 2.5% level
Make appropriate assumptions about:

the expected difference in mean CFB in MMD at week 12
the standard deviation for the CFB in MMD at week 12

The sample size per arm is given by the following formula:

NB: remember that the power is , so .
If we use the quantities from the previous trial at week 4 as guesses for and , the necessary sample
size per arm is estimated at 222.

π̂

δ

σ

n =
2 (+σ2 Z1−α Z1−β)2

δ2

1 − β β = 10%

δ = −2 σ = 6.5

The right choice for the standard deviation and expected effect size can be debated due to design differences
between the proof of concept trial and the confirmatory trial. One could also consider powering the study for the
minimum relevant effect from either a clinical or a business perspective.

Assumptions:
delta <- -2
sigma <- 6.5
power <- 0.9
beta <- 1 - power
alpha <- 0.025

Sample size computation
sample_size <- 2 * sigma^2 * (qnorm(1 - alpha) + qnorm(1 - beta))^2/delta^2
ceiling(sample_size)

[1] 222

The right choice for the standard deviation and expected effect size can be debated due to design differences
between the proof of concept trial and the confirmatory trial. One could also consider powering the study for the
minimum relevant effect from either a clinical or a business perspective.

Exercise 2: calculate assurance for the confirmatory
trial
Use a normal distribution with mean 2 and standard deviation 2 as prior.

1. Create a plot with sample size (from 1 to 1000) on the x-axis and PoS on the y-axis. Include first one curve
displaying power as a function of the sample size, and second one curve displaying assurance as a function
of sample size.
Hint: first create two functions that return power and assurance as a function of sample size using formulas
from slides #31 and #13 (if you need help, see last slide in this presentation).

Hint
power_fun <- function(n, delta = 2, sigma = 6.5, alpha = 0.025) {
 # TODO from slide n°13
}
assurance_fun <- function(n, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.02
5) {
 # TODO from slide n°31
}

Coding tip: use the apply function to quickly obtain the value of a
function for a sequence of input values
n <- seq(0,1000,1)
results <- sapply(n, _yourfunction_, ...) #where you can use ... to
give further arguments
to _yourfunction_

power_fun <- function(n, delta = 2, sigma = 6.5, alpha = 0.025) {
 pwr <- pnorm(qnorm(alpha) + (sqrt(n) * delta)/(sqrt(2) * sigma))
 return(pwr)
}
assurance_fun <- function(n, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.02
5) {
 tau <- sigma * sqrt(2/n)
 asrc <- pnorm((-qnorm(1 - alpha) * tau + mu_delta)/(sqrt(sigma_delta^2 + tau^2)))
 return(asrc)
}

Ploting the results
n <- seq(1, 1000, 1)
power_res <- sapply(n, power_fun)
assurance_res <- sapply(n, assurance_fun)
plot(x = n, power_res, xlab = "Sample size per arm", ylab = "PoS", type = "l", col =
"red3",
 ylim = c(0, 1), lwd = 1.5)
lines(x = n, assurance_res, type = "l", col = "dodgerblue", ylim = c(0, 1), lty = "da
shed",
 lwd = 1.5)
legend("bottomright", legend = c("Power", "Assurance"), col = c("red3", "dodgerblu
e"),
 lty = c("solid", "dashed"), lwd = 1.5)

2. What is the assurance for the sample size you calculated in Exercise 1 ? Would you choose a different sample
size based on assurance?

assurance_fun(n = 222)

[1] 0.6472213

3. What is the upper bound for assurance for this example? What is the interpretation of this upper bound?

assurance_fun(n = 1000)
assurance_fun(n = 10^6)
assurance_fun(n = 10^10)
assurance_fun(n = 10^200)

[1] 0.7604324
[1] 0.8391526
[1] 0.8413229
[1] 0.8413447

The upper bound can be obtained by either inserting a very large sample size in your assurance function
(approximation) or precisely by integrating the region under the prior where the effect is greater than 0.

n_log <- exp(seq(1,15,0.25))
power_res <- sapply(n_log, power_fun)
assurance_res <- sapply(n_log, assurance_fun)

library(ggplot2)
ggplot(cbind.data.frame(n_log, power_res, assurance_res), aes(x=n_log)) +
 geom_line(aes(y=power_res, linetype="Power", color="Power")) +
 geom_line(aes(y=assurance_res, linetype="Assurance", color="Assurance")) +
 scale_linetype_manual(name="", values=c("dashed", "solid")) +
 scale_color_manual(name="", values=c("dodgerblue", "red3")) +
 ylab("PoS") +
 xlab("Sample size per arm (log scale)") +
 ylim(c(0,1)) +
 theme_bw() +
 scale_x_log10() +
 annotation_logticks(sides = "b")

[1] 0.8413447

The minimum value that results in a significant p-value is

[1] 1.209205

Exercise 3: adding a requirement on the minimum
relevant effect to assurance

1. To the plot from Exercise 2, add a line for assurance where success is declared if the p-value is significant
AND the effect estimate is at least .
Hint: modify the formula from slide #31

1.21

1.5

For this version of assurance we declare success if

The formula from Slide 31 can be modified as follows:

assurance_fun_both <- function(n, mre = 1.5, mu_delta = 2, sigma_delta = 2, sigma =
6.5,
 alpha = 0.025) {
 tau <- sigma * sqrt(2/n)
 asrc <- pnorm((-max(qnorm(1 - alpha) * tau, mre) + mu_delta)/(sqrt(sigma_delta^2
+
 tau^2)))
 return(asrc)
}

n <- seq(1, 1000, 1)
power_res <- sapply(n, power_fun)
assurance_res <- sapply(n, assurance_fun)
assurance_res_both <- sapply(n, assurance_fun_both)

plot(x = n, power_res, xlab = "Sample size per arm", ylab = "PoS", type = "l", col =
"red3",
 ylim = c(0, 1), lwd = 1.5)
lines(x = n, assurance_res, type = "l", col = "dodgerblue", ylim = c(0, 1), lty = "da
shed",
 lwd = 1.5)
lines(x = n, assurance_res_both, type = "l", col = "orange", ylim = c(0, 1), lty = "d
otted",
 lwd = 1.5)
legend("bottomright", legend = c("Power", "Assurance - pval", "Assurance - pval & eff
ect"),
 col = c("red3", "dodgerblue", "orange"), lty = c("solid", "dashed", "dotted"),
 lwd = 1.5)

− > τ and − > 1.5ȳ1 ȳ0 z1−α ȳ1 ȳ0

P [− > max(τ, 1.5)] = Φȳ1 ȳ0 z1−α

⎛

⎝

⎜⎜⎜
− max(τ, 1.5) +z1−α μδ

+σ2
δ τ2‾ ‾‾‾‾‾‾√

⎞

⎠

⎟⎟⎟

2. What is the upper bound for this version of assurance ?

assurance_fun_both(n = 10^8, mre = 1.5)

[1] 0.5987063

1 - pnorm(1.5, mean = 2, sd = 2)

[1] 0.5987063

3. Also add to the plot a line for assurance where success is declared in case of a significant p-value for
evaluating the null hypothesis that the effect equals 1.5
Hint: modify the formula from slide #31

For this version of assurance, the critical value that needs to be exceeded is . Hence the formula
for the assurance becomes:

assurance_fun_mre <- function(n, mre = 1.5, mu_delta = 2, sigma_delta = 2, sigma = 6.
5,
 alpha = 0.025) {
 tau <- sigma * sqrt(2/n)
 asrc <- pnorm((-(qnorm(1 - alpha) * tau + mre) + mu_delta)/(sqrt(sigma_delta^2 +
 tau^2)))
 return(asrc)
}

τ + 1.5z1−α

P[− > τ + 1.5] = Φȳ1 ȳ0 z1−α

⎛

⎝

⎜⎜⎜
− τ − 1.5 +z1−α μδ

+σ2
δ τ2‾ ‾‾‾‾‾‾√

⎞

⎠

⎟⎟⎟

n <- seq(1, 1000, 1)
power_res <- sapply(n, power_fun)
power_res_1.5 <- sapply(n, power_fun, delta = 1.5)
assurance_res <- sapply(n, assurance_fun)
assurance_res_1.5 <- sapply(n, assurance_fun_mre, mre = 1.5)

plot(x = n, power_res, xlab = "Sample size per arm", ylab = "PoS", type = "l", col =
"red3",
 ylim = c(0, 1), lwd = 1.5)
lines(x = n, power_res_1.5, type = "l", col = "salmon", ylim = c(0, 1), lty = "dotte
d",
 lwd = 1.5)
lines(x = n, assurance_res, type = "l", col = "dodgerblue", ylim = c(0, 1), lty = "da
shed",
 lwd = 1.5)
lines(x = n, assurance_res_1.5, type = "l", col = "purple", ylim = c(0, 1), lty = "do
tdash",
 lwd = 1.5)
legend("bottomright", legend = c("Power - H1: d>2", "Power - H1: d>1.5", "Assurance -
pval H1: d≠0",
 "Assurance - pval H1: d>1.5"), col = c("red3", "salmon", "dodgerblue", "purple"),
 lty = c("solid", "dotted", "dashed", "dotdash"), lwd = 1.5)

4. What is the upper bound for this version of assurance?

1 - pnorm(0, mean = 1.5, sd = 2)

[1] 0.7733726

5. Which version of assurance do you prefer for the case study?

It is important that the success criterion for the trial matches the assurance.

For a large confirmatory trial, in practice a result is often considered acceptable when the p-value
corresponding to the null hypothesis of no effect is significant and the point estimate is above a minimum
relevant limit. This speaks in favor of the assurance from exercise 3.1. However, it would be important to

evaluate whether this type of success criterion does not result in too many false positive results as the point
estimate does not capture the variability around the estimate.

Assurance based on a p-value for the null hypothesis that the effect equals a minimum limit that needs to be
exceeded could be appropriate. Drawbacks are that:

it is hard to choose an appropriate effect size for the null hypothesis. In this example I chose the
minimum relevant effect quite high for illustrative purposes. It is not easy to choose a good null
hypothesis in this setting, as the effect in the null hypothesis needs to be large enough such that
rejecting the null hypothesis implies that the effect of the drug is meaningful, but at the same time it
should not include effect sizes that are meaningful as in those cases we would wish to conclude
efficacy (reject the null hypothesis).
designing a trial for such a null hypothesis results in much larger sample sizes such that the added
benefit of such a more rigorous success criterion needs to be weighed against the extra resources
required and the fact that more subjects need to be put at risk.

Bonus: what sample size would we need for the confirmatory trial if we wish to reject a null hypothesis that
the effect equals and we assume the effect is under the alternative and we require power and wish
to control the false positive rate at one-sided ?

Refer to slide #8:
we now have and . Therefore we now need to ensure that

 resulting in the same formula for the sample size, where is replaced by
.

Exercise 4: the posterior conditional failure and
success distributions for the case study

1. Write an function that returns the prior from Exercise 2 for a given .
Hint: use the function dnorm

prior_delta <- function(delta, mu = 2, sigma = 2) {
 return(dnorm(delta, mean = mu, sd = sigma))
}

2. Write an function that returns the likelihood (i.e. the power) as a function of for
the confirmatory trial with a sample size of patients per arm and a standard deviation of .

likelihood_success <- function(delta, n = 222, sigma = 6.5, alpha = 0.025) {
 tau <- sigma * sqrt(2/n)
 pwr <- pnorm(qnorm(alpha) + delta/tau)
 return(pwr)
}

3. Calculate the assurance for the confirmatory trial in case a sample size of per arm is used and the
success criterion is a significant p-value (you can re-use the result from Exercise 2 if you did it with a sample
size of 222 per arm).

1.5 2 90

2.5

: − = 1.5H0 μ1 μ0 : − = 2H1 μ1 μ0

1.5 + σ = 2 + σz1−α 2/n‾ ‾‾√ zβ 2/n‾ ‾‾√ δ

δ − 1.5 = 2 − 1.5 = 0.5

π(δ) δ

P (− > τ|δ)y
⎯⎯⎯

1 y
⎯⎯⎯

0 Z1−α δ

222 σ = 6.5

222

assurance_fun <- function(n = 222, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha
= 0.025) {
 tau <- sigma * sqrt(2/n)
 asrc <- pnorm((-qnorm(1 - alpha) * tau + mu_delta)/(sqrt(sigma_delta^2 + tau^2)))
 return(asrc)
}
assurance_222constant <- assurance_fun()

4. Use the results from steps 1-3 to create a plot of the posterior conditional success distribution.

posterior_csd <- function(delta, samplesize = 222) {
 prior_delta(delta) * likelihood_success(delta, n = samplesize)/assurance_fun(n =
samplesize)
}

d <- seq(-5, 15, 0.1)
post_csd_res <- sapply(d, posterior_csd)

plot(x = d, post_csd_res, xlab = expression(delta), ylab = "Posterior conditional suc
cess distribution",
 type = "l", col = "darkgreen", lwd = 2)

5. Similarly, derive the posterior conditional failure distribution and add it to the plot.

posterior_csf <- function(delta, samplesize = 222) {
 prior_delta(delta) * (1 - likelihood_success(delta, n = samplesize))/(1 - assuran
ce_fun(n = samplesize))
}

post_csd_res <- sapply(d, posterior_csd)
post_csf_res <- sapply(d, posterior_csf)

plot(x = d, post_csd_res, xlab = expression(delta), ylab = "Posterior conditional dis
tribution",
 type = "l", col = "darkgreen", lwd = 2, xlim = c(-5, 15), ylim = c(0, 0.6), main
= "Sample-size = 222")
lines(x = d, post_csf_res, xlab = expression(delta), type = "l", col = "red", lwd =
2,
 lty = 2)
abline(v = 1.45, lty = 3)
legend("topright", legend = c("Success", "Failure"), col = c("darkgreen", "red"),
 lty = c("solid", "dashed"), lwd = 2)

6. Are you satisfied with the proposed design in its ability to distinguish between a drug that works and a drug
that doesn’t work?

Ideally the overlap between the two functions is small. In this case we can see that some successes are
concluded when the true effect is below and some failures are concluded despite the effect being above

. However, the overlap between the two functions is not very large and may be acceptable.
1.5

1.5

post_csd_res <- sapply(d, posterior_csd, samplesize = 2000)
post_csf_res <- sapply(d, posterior_csf, samplesize = 2000)

plot(x = d, post_csd_res, xlab = expression(delta), ylab = "Posterior conditional dis
tribution",
 type = "l", col = "darkgreen", lwd = 2, xlim = c(-5, 15), ylim = c(0, 0.6), main
= "Sample-size = 2000")
lines(x = d, post_csf_res, xlab = expression(delta), type = "l", col = "red", lwd =
2,
 lty = 2)
abline(v = 0.6, lty = 3)
legend("topright", legend = c("Success", "Failure"), col = c("darkgreen", "red"),
 lty = c("solid", "dashed"), lwd = 2)

The code below gives the posterior conditional success and failure distributions for assurance when success
is declared if the point estimate is above the minimum relevant effect. The curves are quite similar, but shifted
slightly to the right.

pwr2 <- function(sigma, delta, alpha, n, mre) {
 pnorm((-max(mre, qnorm(1 - alpha) * sigma * sqrt(2/n)) + delta)/(sigma * sqrt(2/
n)))
}

pcsd2 <- function(delta, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.025,
 beta = 0.1, n = 222, mre = 1.5) {
 prior_delta(delta, mu_delta, sigma_delta) * pwr2(delta, sigma = sigma, alpha = al
pha,
 n = n, mre = mre)/assurance_fun_both(sigma = sigma, alpha = alpha, n = n,
 mu_delta = mu_delta, sigma_delta = sigma_delta, mre = mre)
}

pcfd2 <- function(delta, mu_delta = 2, sigma_delta = 2, sigma = 6.5, alpha = 0.025,
 beta = 0.1, n = 222, mre = 1.5) {
 prior_delta(delta, mu_delta, sigma_delta) * (1 - pwr2(delta, sigma = sigma, alpha
= alpha,
 n = n, mre = mre))/(1 - assurance_fun_both(sigma = sigma, alpha = alpha,
 n = n, mu_delta = mu_delta, sigma_delta = sigma_delta, mre = mre))
}

success_res2 <- sapply(d, pcsd2)
failure_res2 <- sapply(d, pcfd2)

plot(d, success_res2, type = "l", col = "darkgreen", lwd = 2, xlab = "delta", ylab =
"Density",
 ylim = c(0, 0.5))
lines(d, failure_res2, col = "red", lwd = 2)
abline(v = 1.45, lty = 3)

Exercise 5
1. Compute the probability of a true success for the confirmatory trial where a significant p-value is considered

the criterion for success (for the null hypothesis of no effect).
Hint: use the function pmvnorm from the package mvtnorm

[1] 0.6465897
attr(,"error")
[1] 1e-15
attr(,"msg")
[1] "Normal Completion"

The probability of a true success equals . This is very similar to the assurance calculated earlier
.

The difference is small because the power for an effect below is at most and the prior probability of
an effect below is small (0.159).

2. Compare this probability to the assurance you calculated earlier.

[1] 0.5944054

The probability of a true success equals . This is a bit lower than the assurance using a success
criterion requiring a significant p-value and a point estimate above 1.5, which is .

3. Compute the probability of a true success for the confirmatory trial where a significant p-value as well as a
point estimate above 1.5 is considered the criterion for success.

4. Compare your result from step 3 to the same version of assurance where we do not require a true success.

Exercise 3
Program a sampling algorithm to sample from the exponential distribution with parameter thanks to the inverse
transform function (starting from the R function runif).
Compare the distribution of your sample to the theoretical target distribution (thanks to the built-in R function
dexp).

Try out several values for the parameter of the exponential distribution (e.g. 1, 10, 0.78, …) to check that the
algorithm is indeed working.

generate_exp <- function(n, lambda) {
 u <- runif(n)
 x <- -1/lambda * log(1 - u)
 return(x)
}

n_samp <- 1000
my_samp <- generate_exp(n = n_samp, lambda = 10)
hist(my_samp, probability = TRUE, n = 25)
curve(dexp(x, rate = 10), from = 0, to = max(my_samp), col = "red", lty = 2, add = TRUE)
legend("topright", c("Inverse transform", "R dexp()"), lty = c(1, 2), col = c("black",
 "red"))

0.6466

0.6472

0 2.5%

0

0.5503

0.5944

λ

λ

Exercise 4
Using the historical example, program an independent Metropolis-Hastings algorithm to estimate the posterior
distribution of parameter (i.e. the probability of having a girl for a birth). The prior distribution on will be used as
the instrumental proposal, and we will start by using a uniform prior on . We will consider the births
observed in Paris between 1745 and 1770, of which were girls.

1. Program a function that computes the numerator of the posterior density, which can be written
 with and (plan for a boolean argument that will allow to

return — or not — the logarithm of the posterior instead).

post_num_hist <- function(theta, log = FALSE) {

 n <- 493472 # the data
 S <- 241945 # the data

 if (log) {
 num <- S * log(theta) + (n - S) * log(1 - theta) # the **log** numerator of
the posterior
 } else {
 num <- theta^S * (1 - theta)^(n - S) # the numerator of the posterior
 }
 return(num) # the output of the function
}

post_num_hist(0.2, log = TRUE)

[1] -445522.1

post_num_hist(0.6, log = TRUE)

[1] -354063.6

θ θ

θ 493, 472

241, 945

p(θ|n, S) ∝ (1 − θθS)n−S S = 241 945 n = 493 472

2. Program the corresponding Metropolis-Hastings algorithm, returning a vector of size sampled according to
the posterior distribution. Also, have the algorithm return the vector of acceptance probabilities . What
happens if this acceptance probability is NOT computed on the scale ?

myMH <- function(niter, post_num) {

 x_save <- numeric(length = niter) #create a vector of 0s
 # of length niter to store the sampled values

 alpha <- numeric(length = niter) #create a vector of 0s
 # of length niter to store the acceptance probabilities

 # initialise x0
 x <- runif(n = 1, min = 0, max = 1)

 # acceptance-rejection loop
 for (t in 1:niter) {
 # sample y from the proposal (here uniform prior)
 y <- runif(n = 1, min = 0, max = 1)
 # compute the acceptance-rejection probability
 alpha[t] <- min(1, exp(post_num(y, log = TRUE) - post_num(x, log = TRUE)))
 # accept or reject
 u <- runif(1)
 if (u <= alpha[t]) {
 x_save[t] <- y
 } else {
 x_save[t] <- x
 }

 # update the current value
 x <- x_save[t]
 }
 return(list(theta = x_save, alpha = alpha))
}

3. Compare the posterior density obtained with this Metropolis-Hastings algorithm over 2000 iterations to the
theoretical one (the theoretical density can be obtained with the R function
dbeta(x, 241945 + 1, 251527 + 1) and represented with the R function
curve(..., from = 0, to = 1, n = 10000)). Mindfully discard the first 500 iterations of your Metropolis-

Hastings algorithm in order to reach the Markov chain convergence before constructing your Monte Carlo
sample. Comment those results, especially in light of the acceptance probabilities computed throughout the
algorithm, as well as the different sampled values for .

n

α

log

θ

sampleMH <- myMH(2000, post_num = post_num_hist)

par(mfrow = c(2, 2))
plot(density(sampleMH$theta[-c(1:500)]), col = "red", xlim = c(0, 1), ylab = "Posteri
or probability density",
 xlab = expression(theta), main = "")
curve(dbeta(x, 241945 + 1, 251527 + 1), from = 0, to = 1, n = 10000, add = TRUE)
legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)

plot(density(sampleMH$theta[-c(1:500)]), col = "red", ylab = "Posterior probability d
ensity",
 xlab = expression(theta), main = "Zoom")
curve(dbeta(x, 241945 + 1, 251527 + 1), from = 0, to = 1, n = 10000, add = TRUE)
legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)

plot(sampleMH$alpha, type = "h", xlab = "Iteration", ylab = "Acceptance Probability",
 ylim = c(0, 1), col = "springgreen")
plot(sampleMH$theta, type = "l", xlab = "Iteration", ylab = expression(paste("Sampled
value for ",
 theta)), ylim = c(0, 1))

4. Now imagine we only observe births, among which girls, and use a distribution
as prior. Program the corresponding M-H algorithm and study the new results (one can do iterations
of this new M-H algorithm for instance, again mindfully discarding the first 500 iterations).

100 49 Beta(α = 3, β = 3)

10, 000

post_num_beta <- function(theta, a = 3, b = 3, log = TRUE) {

 n <- 100 #number of trials (births)
 S <- 49 #number of success (feminine births)

 if (log) {
 num <- (a + S - 1) * (log(theta)) + (b + n - S - 1) * log(1 - theta)
 } else {
 num <- theta^(a + S - 1) * (1 - theta)^(b + n - S - 1)
 }
 return(num)
}

myMH_betaprior <- function(niter, post_num, a = 3, b = 3) {

 x_save <- numeric(length = niter) # create a vector of 0s of length niter to sto
re the sampled values
 alpha <- numeric(length = niter) # create a vector of 0s of length niter to stor
e the acceptance probabilities

 # initialise x
 x <- runif(n = 1, min = 0, max = 1)

 # acceptance-rejection loop
 for (t in 1:niter) {

 # sample a value from the proposal (beta prior)
 y <- rbeta(n = 1, a, b)

 # compute acceptance-rejection probability
 alpha[t] <- min(1, exp(post_num(y, a = a, b = b, log = TRUE) - post_num(x,
 a = a, b = b, log = TRUE) + dbeta(x, a, b, log = TRUE) - dbeta(y, a,
 b, log = TRUE)))
 # acceptance-rejection step
 u <- runif(1)
 if (u <= alpha[t]) {
 x <- y # acceptance of y as new current value
 }
 # saving the current value of x
 x_save[t] <- x
 }
 return(list(theta = x_save, alpha = alpha))
}

sampleMH <- myMH_betaprior(10000, post_num = post_num_beta)

par(mfrow = c(2, 2))
plot(density(sampleMH$theta[-c(1:500)]), col = "red", xlim = c(0, 1), ylab = "Posteri
or probability density",
 xlab = expression(theta), main = "")
curve(dbeta(x, 49 + 1, 51 + 1), from = 0, to = 1, add = TRUE)
legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)

plot.new()
plot(sampleMH$alpha, type = "h", xlab = "Iteration", ylab = "Acceptance probability",
 ylim = c(0, 1), col = "springgreen")
plot(sampleMH$theta, type = "l", xlab = "Iteration", ylab = expression(paste("Sampled
value for ",
 theta)), ylim = c(0, 1))

5. Using the data from the historical example and with a prior, program a random-walk
Metropolis-Hastings algorithm (with a Gaussian random step of sd=0.02 for instance). This means that the
proposal is going to change, and is now going to depend on the previous value.
Once again, study the results obtained this way (one can change the width of the random step).

Beta(α = 3, β = 3)

post_num_beta_hist <- function(theta, a = 3, b = 3, log = TRUE) {

 n <- 493472 #number of trials (births)
 S <- 241945 #number of success (feminine births)

 if (log) {
 num <- (a + S - 1) * log(theta) + (b + n - S - 1) * log(1 - theta)
 } else {
 num <- theta^(a + S - 1) * (1 - theta)^(b + n - S - 1)
 }
 return(num)
}

myMH_betaprior_randomwalk <- function(niter, post_num, a = 3, b = 3) {

 x_save <- numeric(length = niter) # create a vector of 0s of length niter to sto
re the sampled values
 alpha <- numeric(length = niter) # create a vector of 0s of length niter to stor
e the acceptance probabilities

 # initialise x0
 x <- runif(n = 1, min = 0, max = 1)

 # acceptance-rejection loop
 for (t in 1:niter) {
 # sample a value from the proposal (random walk)
 y <- rnorm(1, mean = x, sd = 0.02)

 # compute acceptance-rejection probability
 alpha[t] <- min(1, exp(post_num(y, a = a, b = b, log = TRUE) - post_num(x,
 a = a, b = b, log = TRUE)))

 # acceptance-rejection step
 u <- runif(1)
 if (u <= alpha[t]) {
 x <- y # accept y and update current value
 }

 # save current value
 x_save[t] <- x
 }

 return(list(theta = x_save, alpha = alpha))
}

sampleMH <- myMH_betaprior_randomwalk(20000, post_num = post_num_beta_hist)

par(mfrow = c(2, 2))
plot(density(sampleMH$theta[-c(1:1000)]), col = "red", ylab = "Posterior probability
density",
 xlab = expression(theta), main = "")
curve(dbeta(x, 241945 + 1, 251527 + 1), from = 0, to = 1, n = 10000, add = TRUE)

legend("topright", c("M-H", "theory"), col = c("red", "black"), lty = 1)
plot(sampleMH$alpha, type = "h", xlab = "Iteration", ylab = "Acceptance probability",
 ylim = c(0, 1), col = "springgreen")
plot(sampleMH$theta, type = "l", xlab = "Iteration", ylab = expression(paste("Sampled
value for ",
 theta)), ylim = c(0, 1))
plot(sampleMH$theta, type = "l", xlab = "Iteration", main = "Zoom", ylab = expression
(paste("Sampled value for ",
 theta)), ylim = c(0.45, 0.55))

Exercise 5
The BUGS project (https://www.mrc-bsu.cam.ac.uk/software/bugs/) (Bayesian inference Using Gibbs Sampling) was
initiated in 1989 by the MRC (Medical Research Council) Biostatistical Unit at the University of Cambridge (United-
Kingdom) to develop a flexible and user-friendly software for Bayesian analysis of complex models through MCMC
algorithms. Its most famous and original implementation is WinBUGS , a clicking software available under Windows.
OpenBUGS is an alternative implementation of WinBUGS running on either Windows, Mac OS ou Linux. JAGS

(http://mcmc-jags.sourceforge.net/) (Just another Gibbs Sampler) is a different and newer implementation that also
relies on the BUGS language. Finally, the STAN (http://mc-stan.org/) software must also be mentionned, recently
developed et the Columbia Univeristy, ressemble BUGS through its interface, but relies on innovative MCMC
approaches, such as Hamiltonian Monte Carlo, or variational Bayes approaches. A very useful resource is the JAGS
user manual (http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf).

To familiarise yourself with JAGS (and its R interface through the package rjags), we will look here at the
posterior estimation of the mean and variance of observed data that we will model with a Gaussian distribution.

0. Start by loading the R package rjags .

https://www.mrc-bsu.cam.ac.uk/software/bugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf

library(rjags)

A BUGS model has 3 components:

the model: specified in an external text file (.txt) according to a specific BUGS syntax
the data: a list containing each observation under a name matching the one used in the model specification
the initial values: (optional) a list containing the initial values for the various parameters to be estimated

1. Sample observations from a Gaussian distribution with mean and standard deviation
using the R function rnorm and store it into an object called obs .

N <- 50 # the number of observations
obs <- rnorm(n = N, mean = 2, sd = 3) # the (fake) observed data

2. Read the help of the rjags package, then save a text file (.txt) the following code defining the BUGS
model:

Model
model{

 # Likelihood
 for (i in 1:N){
 obs[i]~dnorm(mu,tau)
 }

 # Prior
 mu~dnorm(0,0.0001) # proper but very flat (so weakly informative)
 tau~dgamma(0.0001,0.0001) # proper, and weakly informative (conjugate for Gaussian)

 # Variables of interest
 sigma <- pow(tau, -0.5)
}

Each model specification file must start with the instruction model{ indicating JAGS is about to receive a model
specification. Then the model must be set up, usually by cycling along the data with a for loop. Here, we want to
declare N observations, and each of them obs[i] follows a Gaussian distribution (characterized with the
command dnorm) of mean mu and precision tau .

⚠ In BUGS , the Gaussian distribution is parameterized by its precision, which is simply the inverse of the variance
(). Then, one needs to define the prior distribution for each parameter -– here both mu and tau . For mu ,
we use a Gaussian prior with mean and precision (thus variance : this corresponds to a weakly
informative prior quite spread out given the scale of our data. For tau we use the conjugate prior for precision in a
Gaussian model, namely the Gamma distribution (with very small parameters, here again to remain the least
informative possible). Finally, we give a deterministic definition of the additional parameters of interest, here the
standard deviation sigma .

NB: ~ indicates probabilistic distribution definition of a random variable, while <- indicates a deterministic
calculus definition.

3. With the R function jags.model() , create a jags object R .

N = 50 m = 2 s = 3

τ = 1/σ2

0 10−4 10, 000

myfirstjags <- jags.model("normalBUGSmodel.txt", data = list(obs = obs, N = length(ob
s)))

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 50
Unobserved stochastic nodes: 2
Total graph size: 58

Initializing model

4. With the R function coda.samples() , generate a sample of size from the posterior distributions for
the mean and standard deviation parameters.

res <- coda.samples(model = myfirstjags, variable.names = c("mu", "sigma"), n.iter =
2000)

5. Study the output of the coda.samples() R function, and compute both the posterior mean and median
estimates for mu and sigma . Give a credibility interval at 95% for both.

plot(res)

2, 000

res_sum <- summary(res)
res_sum

Iterations = 1:2000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 1.551 0.4003 0.008952 0.008952
sigma 2.830 0.2937 0.006567 0.006567

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 0.7381 1.290 1.551 1.826 2.324
sigma 2.3084 2.624 2.814 3.012 3.455

res_sum$statistics["mu", "Mean"]

[1] 1.551182

res_sum$statistics["sigma", "Mean"]

[1] 2.830303

res_sum$quantiles["mu", "50%"]

[1] 1.551426

res_sum$quantiles["sigma", "50%"]

[1] 2.813886

res_sum$quantiles["mu", c(1, 5)]

2.5% 97.5%
0.7380642 2.3236741

res_sum$quantiles["sigma", c(1, 5)]

2.5% 97.5%
2.308398 3.455007

6. Load the coda R package. This package functions for convergence diagnostic and analysis of MCMC
algorithm outputs.

library(coda)

7. To diagnose the convergence of an MCMC algorithm, it is necessary to generate different Markov chains, with
different initial values. Recreate a new jags object in R and specify the use of 3 Markov chains with the
argument n.chains , and initialize mu at and tau at respectively with the
argument inits (ProTip: use a list of list , one for each chain).

myjags2 <- jags.model("normalBUGSmodel.txt", data = list(obs = obs, N = N), n.chains
= 3,
 inits = list(list(mu = 0, tau = 1), list(mu = -10, tau = 1/100), list(mu = 100,
 tau = 1/10)))

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 50
Unobserved stochastic nodes: 2
Total graph size: 58

Initializing model

res2 <- coda.samples(model = myjags2, variable.names = c("mu", "sigma"), n.iter = 100
0)
plot(res2)

0, −10, 100 1, 0.01, 0.1

8. With the R function gelman.plot() , plot the Gelman-Rubin statistic.

gelman.plot(res2)

9. With the R functions autocorr.plot() and acfplot() evaluate the autocorrelation of the studied
parameters.

acfplot(res2)

par(mfrow = c(3, 2))
autocorr.plot(res2, ask = FALSE, auto.layout = FALSE)

10. With the R function cumuplot() evaluate the running quantiles of the studied parameters. How can you
interpret them ?

par(mfrow = c(3, 2))
cumuplot(res2, ask = FALSE, auto.layout = FALSE)

Each row of the above graph is a different chain. The cumulative quantiles are indeed stable after the first few
iterations in all chains.

11. With the function hdi() from the R package HDInterval , provide highest densitity posterior credibility
intervals at 95%, and compare them to those obtained with the % and % quantiles.

hdCI <- HDInterval::hdi(res2)
hdCI

mu sigma
lower 0.8008923 2.322298
upper 2.4006651 3.448734
attr(,"credMass")
[1] 0.95

symCI <- summary(res2)$quantiles[, c(1, 5)]
symCI

2.5 97.5

2.5% 97.5%
mu 0.7641452 2.363983
sigma 2.3400910 3.477797

symCI[, 2] - symCI[, 1]

mu sigma
1.599838 1.137706

hdCI[2,] - hdCI[1,]

mu sigma
1.599773 1.126436

Exercise 6
The randomized clinical trial EOLIA evaluated a new treatment for severe acute respiratory distress syndrome
(severe ARDS) by comparing the mortality rate after 60 days among 249 patients randomized between a control
group (receiving conventional treatment, i.e. mechanical ventilation) and a treatment group receiving extracorporeal
membrane oxygenation (ECMO) — the new treatment studied. A frequentist analysis of the data concluded to a
Relative Risk of death of in the ECMO group compared to controls (in Intention to Treat), with

 and the associated p-value of .

Goligher et al. (2019) performed a Bayesian re-analysis of these data, further exploring the evidence and how it
can be quantified and summarized with a Bayesian approach.

Observed data from the EOLIA trial

Control ECMO

 observed 125 124

number of deceased at 60 days 57 44

1. Write the Bayesian model used by Goligher et al. (2019).

I) Question of interest:
Is the Relative Risk of death under ECMO compared to the conventional mechanical treatment less than one ?

II) Sampling model:
Let be the number of death in the control group, and the number of death in the ECMO group

III) Priors:

1

0.76

C = [0.55, 1.04]I95% 0.09

2

n

Zcontrol Zecmo

∼ Binomial(, 125)Zcontrol pc

∼ Binomial(RR × , 124)Zecmo pc

NB: has approximately a standard deviation of 10 (cf Table 1 of Goligher et al., 2019)
NB: One can also define a sampling model at the individual level:
Let be a binary variable indicating whether the patient from the control group died before 60 days,
and a similar variable for patient from the ecmo group.

2. Write the corresponding BUGS model, and save it into a .txt file (for instance called
goligherBUGSmodel.txt)

As we have seen above, there are two equivalent ways of defining the sampling model:
either at the population level with a Binomial likelihood,
or at the individual level with a Bernoulli likelihood

Population model
model{

 # Sampling model
 zcontrol~dbin(pc, ncontrol)
 zecmo~dbin(RR*pc, necmo)

 # Prior
 logRR~dunif(-17, 17) # SD is approximately 10
 pc~dunif(0,1) #probability of death in the control group

 # Re-parameterizations
 RR <- exp(logRR)
 ARR <- pc - RR*pc
}

∼pc U[0,1]

log(RR) ∼ U[−17,17]

U[−17,17]

Ycontroli i

Yecmoi

Bernoulli()Ycontroli ∼iid pc

Bernoulli(RR ×)Yecmoi
∼iid pc

Individual model
model{

 # Sampling model
 for (i in 1:ncontrol){
 ycontrol[i]~dbern(pc)
 }
 for (i in 1:necmo){
 yecmo[i]~dbern(RR*pc)
 }

 # Prior
 logRR~dunif(-17, 17) # SD is approximately 10
 pc~dunif(0,1) #probability of death in the control group

 # Re-parameterizations
 RR <- exp(logRR)
 ARR <- pc - RR*pc
}

3. First create two binary data vectors ycontrol and yecmo (or ycontrol and yecmo that are either 1 or
0 , using the rep() R function if you prefer the individual model), to encode the observations from the data

table above. Then uses the jags.model() and coda.samples() to replicate the estimation from Goligher
et al. (2019) (ProTip: use the function window() to remove the burn-in observation from the output of the
coda.samples function.)

#Individual data
ycontrol <- c(rep(0, 125-57), rep(1, 57))
yecmo <- c(rep(0, 124-44), rep(1, 44))

#sampling
library(rjags)
goligher_jags_indiv <- jags.model(file = "goligherBUGSmodel_indiv.txt",
 data = list("ycontrol" = ycontrol,
 "ncontrol" = length(ycontrol),
 "yecmo" = yecmo,
 "necmo" = length(yecmo)
),
 n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 249
Unobserved stochastic nodes: 2
Total graph size: 260

Initializing model

res_goligher_indiv <- coda.samples(model = goligher_jags_indiv,
 variable.names = c('pc', 'RR', 'ARR'),
 n.iter = 40000)

#postprocessing
res_goligher_burnt_indiv <- window(res_goligher_indiv, start=21001) # remove burn-in
for Markov chain convergence
#NB: by default coda.samples() performs 1000 first burnin iterations that are automat
ically removed from the output but till indexed.

#Population data
zcontrol <- 57
zecmo <- 44
#sampling
goligher_jags_pop <- jags.model(file = "goligherBUGSmodel_pop.txt",
 data = list("zcontrol" = zcontrol,
 "ncontrol" = 125,
 "zecmo" = zecmo,
 "necmo" = 124
),
 n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 2
Unobserved stochastic nodes: 2
Total graph size: 13

Initializing model

res_goligher_pop <- coda.samples(model = goligher_jags_pop,
 variable.names = c('pc', 'RR', 'ARR'),
 n.iter = 40000)

#post-processing
res_goligher_burnt_pop <- window(res_goligher_pop, start=21001) # remove burn-in for
Markov chain convergence
#NB: by default coda.samples() performs 1000 first burnin iterations that are automat
ically removed from the output but till indexed.

4. Check the convergence, and then comment the estimate results (ProTip: look at the effective sample size
with the effectiveSize() R function).

effectiveSize(res_goligher_burnt_pop)

ARR RR pc
14853.12 15950.00 15473.22

plot(res_goligher_burnt_pop)

gelman.plot(res_goligher_burnt_pop)

acfplot(res_goligher_burnt_pop)

par(mfrow=c(3, 2))
cumuplot(res_goligher_burnt_pop, ask=FALSE, auto.layout = FALSE)

par(mfrow=c(1, 1))

summary(res_goligher_burnt_pop)

Iterations = 21001:41000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 20000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
ARR 0.1055 0.06114 0.0002496 0.0005018
RR 0.7765 0.12121 0.0004948 0.0009607
pc 0.4574 0.04394 0.0001794 0.0003534

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
ARR -0.01399 0.06431 0.1057 0.1467 0.2251
RR 0.56167 0.69150 0.7685 0.8530 1.0354
pc 0.37243 0.42739 0.4570 0.4869 0.5445

summary(res_goligher_burnt_indiv)

Iterations = 21001:41000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 20000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
ARR 0.1047 0.06101 0.0002491 0.0004922
RR 0.7782 0.12125 0.0004950 0.0009377
pc 0.4568 0.04402 0.0001797 0.0003423

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
ARR -0.01605 0.0636 0.1049 0.1459 0.2236
RR 0.56355 0.6932 0.7700 0.8542 1.0405
pc 0.37090 0.4271 0.4565 0.4864 0.5435

shortest 95% Credibility interval:
HDInterval::hdi(res_goligher_burnt_pop)

ARR RR pc
lower -0.01260414 0.549213 0.3741914
upper 0.22600990 1.018004 0.5458635
attr(,"credMass")
[1] 0.95

posterior porbability of RR <1: (answering our question !)
head(res_goligher_burnt_pop[[1]]) # first chain

Markov Chain Monte Carlo (MCMC) output:
Start = 21001
End = 21007
Thinning interval = 1
ARR RR pc
[1,] 0.20817796 0.5750249 0.4898592
[2,] 0.03752375 0.9127649 0.4301452
[3,] 0.10727668 0.7738478 0.4743562
[4,] 0.11097880 0.7533753 0.4499906
[5,] 0.10170494 0.7839922 0.4708392
[6,] 0.10166457 0.7707451 0.4434565
[7,] 0.08500842 0.8135700 0.4559803

head(res_goligher_burnt_pop[[2]]) # second chain

Markov Chain Monte Carlo (MCMC) output:
Start = 21001
End = 21007
Thinning interval = 1
ARR RR pc
[1,] 0.12483693 0.7385170 0.4774189
[2,] 0.15901162 0.6548356 0.4606837
[3,] 0.08006603 0.8161768 0.4355599
[4,] 0.12926126 0.7383633 0.4940487
[5,] 0.11523005 0.7565067 0.4732371
[6,] 0.11562887 0.7646998 0.4914099
[7,] 0.11044151 0.7676415 0.4753065

mean(c(sapply(res_goligher_burnt_pop, "[", , "RR"))<1)

[1] 0.9579833

5. Change to a more informative prior using a Gaussian distribution for the log(RR), centered on log(0.78) and
with a standard deviation of 0.15 in the log(RR) scale (i.e. a precision of). Comment the results. Try out
other prior distributions.

1/(0.15^2)

[1] 44.44444

≈ 45

 logRR~dnorm(log(0.78), 45)

Exercise 7
In 2014, Crins et al. published a meta-analysis assessing the incidence of acute rejection (AR) with or without
Interleukin-2 receptor antagonists. In this exercise we will recreate this analysis.

0. Load the package bayesmeta and the data from Crins et al. (2014) with the R command
data("CrinsEtAl2014") .

library(bayesmeta)
data(CrinsEtAl2014)

1. Play around with the companion shiny app at: https://rshiny.gwdg.de/apps/bayesmeta/
(https://rshiny.gwdg.de/apps/bayesmeta/).
If the website is unavailable, you can launch the app locally by running the 2 following commands from :

library("shiny")
install.packages("rhandsontable")
runUrl("http://www.gwdg.de/~croever/bayesmeta/bayesmeta-app.zip")

2. Directly in the console now, using the escalc() function from the package metafor , compute the
estimated log odds ratios from the 6 considered studies alongside their sampling variances (ProTip: read the
Measures for Dichotomous Variables section from the help of the escalc() function). Check that those are
the same as the one on the online shiny app (ProTip: ‘sigma’ is the standard error, i.e. the square root of the
sampling variance vi)

library("metafor")
crins.es <- escalc(measure = "OR", ai = exp.AR.events, n1i = exp.total, ci = cont.AR.
events,
 n2i = cont.total, slab = publication, data = CrinsEtAl2014)
crins.es[, c("publication", "yi", "vi")]

publication yi vi

Heffron (2003) -2.3097026 0.3593718

Gibelli (2004) -0.4595323 0.3095760

Schuller (2005) -2.3025851 0.7750000

Ganschow (2005) -1.7578579 0.2078161

Spada (2006) -1.2584610 0.4121591

Gras (2008) -2.4178959 2.3372623

NB: Log-odds ratios are symmetric around zero and have a sampling distribution closer to the normal
distibution than the natural OR scale. For this reason, they are usually prefered for meta-analyses. Their
sample variance is then computed as the sum of the inverse of all the counts in the associated
contingency table .

3

4

2 × 2
5

https://rshiny.gwdg.de/apps/bayesmeta/
https://rshiny.gwdg.de/apps/bayesmeta/

3. Perform a random-effect meta-analysis of those data using the bayesmeta() function from the package
bayesmeta , within . Use a uniform prior on for and a Gaussian prior for centered around and

with a standard deviation of .

res_crins_bayesmeta <- bayesmeta(y = crins.es$yi, sigma = sqrt(crins.es$vi), labels =
crins.es$publication,
 tau.prior = function(t) {
 dunif(t, max = 4)
 }, mu.prior = c(0, 4), interval.type = "central")
summary(res_crins_bayesmeta)

[0, 4] τ μ 0

4

'bayesmeta' object.
data (6 estimates):
y sigma
Heffron (2003) -2.3097026 0.5994763
Gibelli (2004) -0.4595323 0.5563956
Schuller (2005) -2.3025851 0.8803408
Ganschow (2005) -1.7578579 0.4558685
Spada (2006) -1.2584610 0.6419962
Gras (2008) -2.4178959 1.5288107

tau prior (proper):
function(t) {
dunif(t, max = 4)
}
<bytecode: 0x1202de748>

mu prior (proper):
normal(mean=0, sd=4)

ML and MAP estimates:
tau mu
ML joint 0.3258895 -1.578317
ML marginal 0.4644136 -1.587347
MAP joint 0.3244300 -1.569497
MAP marginal 0.4644205 -1.576092

marginal posterior summary:
tau mu theta
mode 0.46442045 -1.5760916 -1.5656380
median 0.61810119 -1.5866193 -1.5806176
mean 0.73768542 -1.5935568 -1.5935568
sd 0.56879971 0.4698241 1.0448965
95% lower 0.03724555 -2.5605641 -3.7989794
95% upper 2.22766946 -0.6704235 0.5580817

(quoted intervals are central, equal-tailed credible intervals.)

Bayes factors:
tau=0 mu=0
actual 2.6800815 0.094852729
minimum 0.7442665 0.008342187

relative heterogeneity I^2 (posterior median): 0.4718317

plot(res_crins_bayesmeta)

4. Write the corresponding random-effects Bayesian meta-analysis model (using math, not – yet).

I) Question of interest:
Is the treatment (IL2RA) odds ratio for Acute Rejection events inferior to 1 ?
II) Sampling model:
Let be the log-odds-ratio reported by the study and its sampling variance

III) Priors:

5. Use rjags to estimate the same model, saving the BUGS model in a .txt file (called
crinsBUGSmodel.txt for instance).

yi i σ2
i

 (,)yi ∼iid θi σ2
i

 (μ,)θi ∼iid τ2

μ ∼ (0,)42

τ ∼ U[0,4]

Random-effects model for Crins et al. 2014 Acute Rejection meta-analysis
model{

 # Sampling model/likelihood
 for (i in 1:N){
 logOR[i]~dnorm(theta[i], precision.logOR[i])
 theta[i]~dnorm(mu, precision.tau)
 }

 # Priors
 mu~dnorm(0, 0.0625) # 1/16 = 0.0625
 tau~dunif(0, 4)

 # Re-parameterization
 for(i in 1:N){
 precision.logOR[i] <- pow(sigma[i], -2)
 }
 precision.tau <- pow(tau, -2)
 OR <- exp(mu)
}

Sampling
library(rjags)
crins_jags_res <- jags.model(file = "crinsBUGSmodel.txt", data = list(logOR = crins.e
s$yi,
 sigma = sqrt(crins.es$vi), N = length(crins.es$yi)), n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 6
Unobserved stochastic nodes: 8
Total graph size: 34

Initializing model

res_crins_jags_res <- coda.samples(model = crins_jags_res, variable.names = c("mu",
 "tau"), n.iter = 20000)

Postprocessing
res_crins_jags_res <- window(res_crins_jags_res, start = 5001) # remove burn-in for
Markov chain convergence
summary(res_crins_jags_res)

Iterations = 5001:21000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 16000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu -1.594 0.4697 0.002144 0.004113
tau 0.736 0.5689 0.002597 0.010966

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu -2.56996 -1.8529 -1.5882 -1.3233 -0.6707
tau 0.03152 0.3302 0.6206 0.9893 2.2196

HDInterval::hdi(res_crins_jags_res)

mu tau
lower -2.5421524 0.0002661476
upper -0.6495073 1.8380900821
attr(,"credMass")
[1] 0.95

plot(res_crins_jags_res)

Exercise 8
We will now analyze data from the therapeutic clinical trial ALBI-ANRS 070 which compared the efficacy and
tolerance of 3 anti-retroviral strategies among HIV-1 positive patients naive of any anti-retroviral treatment .

1. Load the data from the albianrs_data.csv available here (/files/albianrs_data.csv) (ProTip: set
stringsAsFactors = TRUE in read.delim())

albi <- read.csv("albianrs_data.csv", stringsAsFactors = TRUE)
summary(albi)

PatientID ViralLoad CD4 CD4t CD4sup500
ID112 : 7 Min. :1.699 Min. : 149.0 Min. :3.494 No :558
ID130 : 7 1st Qu.:2.042 1st Qu.: 377.0 1st Qu.:4.406 Yes:392
ID139 : 7 Median :2.712 Median : 465.0 Median :4.644
ID15 : 7 Mean :2.907 Mean : 491.8 Mean :4.664
ID156 : 7 3rd Qu.:3.692 3rd Qu.: 585.0 3rd Qu.:4.918
ID163 : 7 Max. :5.604 Max. :1318.0 Max. :6.025
(Other):908
Treatment Day Visit
AZT+3TC:315 Min. : 0.00 Min. :0.000
d4t+ddI:322 1st Qu.: 29.00 1st Qu.:1.000
switch :313 Median : 84.00 Median :3.000
Mean : 86.19 Mean :2.946
3rd Qu.:140.00 3rd Qu.:5.000
Max. :256.00 Max. :6.000

6

http://127.0.0.1:7416/files/albianrs_data.csv
http://127.0.0.1:7416/files/albianrs_data.csv

The following variables are available:

PatientID : Patient ID
ViralLoad : Plasma viral load
CD4 : CD4 T-cell lymphocites rate (in cell/mm)
CD4t : transformed CD4 T-cell lymphocites rate (in cell/mm) (CD4t = CD4)
CD4sup500 : binary variable indicating wether CD4 cell counts is above 500
Treatment : Treatment group (d4t + ddI), (alternance) ou (AZT + 3TC))
Day : Day of visit (since inclusion)
Visit : Visit number

Below is a quantitative summary of the characteristics of those variables.

Summary of the Albi-ANRS-
070 trial data

Variable N = 950

ViralLoad 2.71 (2.04, 3.69)

CD4 465 (377, 585)

CD4t 4.64 (4.41, 4.92)

CD4sup500 392 (41%)

Treatment

 AZT+3TC 315 (33%)

 d4t+ddI 322 (34%)

 switch 313 (33%)

Day 84 (29, 140)

Visit

 0 146 (15%)

 1 140 (15%)

 2 136 (14%)

 3 130 (14%)

 4 128 (13%)

 5 135 (14%)

 6 135 (14%)

 Median (IQR) or n (%)

NB: for simplicity, NA values have been omitted.

3

3 1/4

1 2 3

1

1

2. First, we want to explain the CD4 rate (as a transformed variable) from the viral load

a. Display CD4t in scatterplot as a function of the ViralLoad and color the points according to
Treatment .

library(ggplot2)
library(MetBrewer)
ggplot(albi, aes(y = CD4t, x = ViralLoad, color = Treatment)) + geom_point(alph
a = 0.7) +
 MetBrewer::scale_color_met_d("Java") + theme_bw()

b. Write down the Bayesian mathematical model corresponding to a linear regression of CD4t against the
ViralLoad .

I) Question of interest:
How does the viral load linearly explains the (transformed) CD4 T-cell rate ?
II) Sampling model:
Let be the (transformed) CD4 T-cell rate and the corresponding observed viral load:

III) Priors:

c. Write the corresponding BUGS model and save it in an external .txt file.

CD4ti ith i VL2
i

CD4 (+ V ,)ti ∼iid β0 β1 Li σ2

∼ (0,)β0 1002

∼ (0,)β1 1002

∼ InvGamma(0.001, 0.001)σ2

Fixed effect linear regression Albi-ANRS
model{

 # Likelihood
 for (i in 1:N){
 CD4t[i]~dnorm(mu[i], tau)
 mu[i] <- beta0 + beta1*VL[i]
 }

 # Priors
 beta0~dnorm(0,0.0001)
 beta1~dnorm(0,0.0001) # proper but very flat (vague: weakly informative)
 tau~dgamma(0.0001,0.0001) # proper but very flat (vague: weakly informative)

 # Parameters of interest
 sigma <- pow(tau, -0.5)
}

d. Create the corresponding jags object in and generate a Monte Carlo sample of size 1000 for the 3
parameters of interest

library(rjags)
albi_fixed_jags <- jags.model("albiBUGSmodel_fixed.txt", data = list(CD4t = alb
i$CD4t,
 N = nrow(albi), VL = albi$ViralLoad), n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 950
Unobserved stochastic nodes: 3
Total graph size: 3195

Initializing model

res_albi_fixed <- coda.samples(model = albi_fixed_jags, variable.names = c("bet
a0",
 "beta1", "sigma"), n.iter = 1000)

e. Before interpreting the results, check the convergence. What do you notice ?

library(coda)
plot(res_albi_fixed)

gelman.plot(res_albi_fixed)

acfplot(res_albi_fixed)

par(mfrow = c(3, 3))
cumuplot(res_albi_fixed, ask = FALSE, auto.layout = FALSE)

f. Using the window function, remove the 500 first iterations as burn-in to reach Markov Chain
convergence to its stationary distribution (the posterior). Is it sufficient to solve convergence issues ?

res_albi_fixed2 <- window(res_albi_fixed, start = 501)

gelman.plot(res_albi_fixed2)

acfplot(res_albi_fixed2)

g. Check the effective sample size of the Monte Carlo sample with the effectiveSize() function.
Reduuce auto-corrlation by increasing the thin parameter to 10 in coda.samples . Check the impact
on the effective sample

`?`(effectiveSize)
effectiveSize(res_albi_fixed2)

beta0 beta1 sigma
92.05785 104.15774 1451.33599

albi_fixed_jags <- jags.model("albiBUGSmodel_fixed.txt", data = list(CD4t = alb
i$CD4t,
 N = nrow(albi), VL = albi$ViralLoad), n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 950
Unobserved stochastic nodes: 3
Total graph size: 3195

Initializing model

res_albi_fixed_thin <- coda.samples(model = albi_fixed_jags, variable.names = c
("beta0",
 "beta1", "sigma"), n.iter = 10000, thin = 10)
res_albi_fixed_thin <- window(res_albi_fixed_thin, start = 5001)

effectiveSize(res_albi_fixed_thin)

beta0 beta1 sigma
941.0284 930.6673 1500.0000

plot(res_albi_fixed_thin)

gelman.plot(res_albi_fixed_thin)

acfplot(res_albi_fixed_thin)

par(mfrow = c(3, 3))
cumuplot(res_albi_fixed_thin, ask = FALSE, auto.layout = FALSE)

summary(res_albi_fixed_thin)

Iterations = 5010:10000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta0 4.79910 0.035987 0.0009292 0.0011900
beta1 -0.04631 0.011725 0.0003027 0.0003885
sigma 0.37439 0.008634 0.0002229 0.0002230

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta0 4.72969 4.77404 4.79903 4.82228 4.87035
beta1 -0.06942 -0.05399 -0.04618 -0.03851 -0.02305
sigma 0.35768 0.36833 0.37447 0.37983 0.39153

3. Compare those results with a frequentist analysis.

summary(lm(CD4t ~ ViralLoad, data = albi))

Call:
lm(formula = CD4t ~ ViralLoad, data = albi)

Residuals:
Min 1Q Median 3Q Max
-1.0828 -0.2604 -0.0197 0.2449 1.3856

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.79635 0.03696 129.8 < 2e-16 ***
ViralLoad -0.04564 0.01201 -3.8 0.000154 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3742 on 948 degrees of freedom
Multiple R-squared: 0.01501, Adjusted R-squared: 0.01397
F-statistic: 14.44 on 1 and 948 DF, p-value: 0.0001537

4. Perform a Bayesian logistic regression to study the impact of the treatment on the binary outcome
CD4sup500 adjusted on the viral load. Once you have a first estimation, try adding an interaction between

the treatment and the viral load.

Fixed effect logistic regression Albi-ANRS
model{

 # likelihood
 for (i in 1:N){
 CD4sup500[i] ~ dbern(proba[i])
 logit(proba[i]) <- beta0 + beta1*VL[i] + beta2*Tt_switch[i] + beta3*d4t[i] + beta
4*VL[i]*d4t[i] + beta5*VL[i]*Tt_switch[i]
 }

 #Priors
 beta0~dnorm(0,0.0001)
 beta1~dnorm(0,0.0001)
 beta2~dnorm(0,0.0001)
 beta3~dnorm(0,0.0001)
 beta4~dnorm(0,0.0001)
 beta5~dnorm(0,0.0001)

 #ORs
 OR_VL <- exp(beta1)
 OR_switch <- exp(beta2)
 OR_d4t <- exp(beta3)
 OR_d4tVL <- exp(beta4)
 OR_swVL <- exp(beta5)
}

library(rjags)
albi_logis_jags <- jags.model("albiBUGSmodel_logistic_fixed.txt", data = list(CD4sup5
00 = 1 *
 (albi$CD4sup500 == "Yes"), N = nrow(albi), VL = albi$ViralLoad, d4t = 1 * (albi$T
reatment ==
 "d4t+ddI"), Tt_switch = 1 * (albi$Treatment == "switch")), n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 950
Unobserved stochastic nodes: 6
Total graph size: 7299

Initializing model

res_albi_logis <- coda.samples(model = albi_logis_jags, variable.names = c("OR_VL",
 "OR_switch", "OR_d4t", "OR_d4tVL", "OR_swVL"), n.iter = 10000)
res_albi_logis_burnt <- window(res_albi_logis, start = 5001)

plot(res_albi_logis_burnt)

summary(res_albi_logis_burnt)

Iterations = 5001:11000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 6000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
OR_VL 0.7730 0.09434 0.0007032 0.007341
OR_d4t 0.4320 0.24763 0.0018457 0.017199
OR_d4tVL 1.4041 0.25103 0.0018711 0.017053
OR_swVL 0.8952 0.15670 0.0011679 0.009811
OR_switch 1.8019 0.89033 0.0066361 0.056547

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
OR_VL 0.5973 0.7062 0.7697 0.8356 0.9631
OR_d4t 0.1269 0.2573 0.3746 0.5457 1.0689
OR_d4tVL 0.9833 1.2222 1.3802 1.5625 1.9562
OR_swVL 0.6415 0.7813 0.8793 0.9906 1.2405
OR_switch 0.6005 1.1606 1.6250 2.2632 3.9564

summary(glm(CD4sup500 == "Yes" ~ ViralLoad * Treatment, family = "binomial", data = a
lbi))

Call:
glm(formula = CD4sup500 == "Yes" ~ ViralLoad * Treatment, family = "binomial",
data = albi)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3279 0.3241 1.012 0.3117
ViralLoad -0.2556 0.1197 -2.135 0.0328 *
Treatmentd4t+ddI -0.9409 0.5338 -1.763 0.0779 .
Treatmentswitch 0.4836 0.4807 1.006 0.3143
ViralLoad:Treatmentd4t+ddI 0.3084 0.1737 1.776 0.0757 .
ViralLoad:Treatmentswitch -0.1303 0.1690 -0.771 0.4409

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1287.8 on 949 degrees of freedom
Residual deviance: 1270.9 on 944 degrees of freedom
AIC: 1282.9

Number of Fisher Scoring iterations: 4

5. So far we have ignored the longitudinal nature of our measurements. Now, lets add a random intercept in our
logistic regression to account for the intra-patient correlation across visits.

ggplot(albi, aes(y = CD4, x = Day, color = Treatment)) + geom_hline(aes(yintercept =
500),
 color = "grey35", linetype = 2) + geom_line(aes(group = PatientID), alpha = 0.3)
+
 MetBrewer::scale_color_met_d("Java") + theme_bw()

 # Mixed effect logistic regression Albi-ANRS
 model{

 # likelihood
 for (i in 1:N){
 CD4sup500[i] ~ dbern(proba[i])
 logit(proba[i]) <- beta0 + b0[PAT_ID[i]] + beta1*VL[i] + beta2*Tt_switch[i] + b
eta3*d4t[i] + beta4*VL[i]*d4t[i] + beta5*VL[i]*Tt_switch[i]
 }

 for (j in 1:Npat){
 b0[j]~dnorm(0, tau_b0)
 }

 #Priors
 beta0~dnorm(0,0.0001)
 beta1~dnorm(0,0.0001)
 beta2~dnorm(0,0.0001)
 beta3~dnorm(0,0.0001)
 beta4~dnorm(0,0.0001)
 beta5~dnorm(0,0.0001)
 tau_b0~dgamma(0.001,0.001)

 #ORs
 OR_VL <- exp(beta1)
 OR_switch <- exp(beta2)
 OR_d4t <- exp(beta3)
 OR_d4tVL <- exp(beta4)
 OR_swVL <- exp(beta5)
 sigma_RI <- pow(tau_b0, -0.5)
 }

library(rjags)
albi_logis_RI_jags <- jags.model("albiBUGSmodel_logistic_RandomInt.txt", data = list
(CD4sup500 = 1 *
 (albi$CD4sup500 == "Yes"), N = nrow(albi), VL = albi$ViralLoad, d4t = 1 * (albi$T
reatment ==
 "d4t+ddI"), Tt_switch = 1 * (albi$Treatment == "switch"), Npat = length(levels(al
bi$PatientID)),
 PAT_ID = as.numeric(albi$PatientID)), n.chains = 3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 950
Unobserved stochastic nodes: 156
Total graph size: 8670

Initializing model

res_albi_logis_RI <- coda.samples(model = albi_logis_RI_jags, variable.names = c("OR_
VL",
 "OR_switch", "OR_d4t", "OR_d4tVL", "OR_swVL", "sigma_RI"), n.iter = 10000)
res_albi_logis_RI_burnt <- window(res_albi_logis_RI, start = 1001)

plot(res_albi_logis_RI_burnt)

summary(res_albi_logis_RI_burnt)

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
OR_VL 0.3679 0.07617 0.0004398 0.004945
OR_d4t 0.5144 0.78926 0.0045568 0.043611
OR_d4tVL 1.6955 0.54137 0.0031256 0.031301
OR_swVL 1.0734 0.30843 0.0017807 0.017052
OR_switch 1.6998 2.32537 0.0134255 0.113632
sigma_RI 3.0083 0.33281 0.0019215 0.006757

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
OR_VL 0.23064 0.3142 0.3649 0.4184 0.5244
OR_d4t 0.02628 0.1239 0.2676 0.5840 2.5589
OR_d4tVL 0.86958 1.3072 1.6214 1.9992 2.9425
OR_swVL 0.61047 0.8511 1.0289 1.2454 1.7963
OR_switch 0.13252 0.5353 1.0521 2.0599 6.7831
sigma_RI 2.42497 2.7748 2.9842 3.2177 3.7184

library(lme4)
summary(lme4::glmer(CD4sup500 == "Yes" ~ (1 | PatientID) + ViralLoad * Treatment,
 family = "binomial", data = albi))

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial (logit)
Formula: CD4sup500 == "Yes" ~ (1 | PatientID) + ViralLoad * Treatment
Data: albi

AIC BIC logLik deviance df.resid
971.8 1005.8 -478.9 957.8 943

Scaled residuals:
Min 1Q Median 3Q Max
-2.9273 -0.4021 -0.1947 0.4119 3.9688

Random effects:
Groups Name Variance Std.Dev.
PatientID (Intercept) 7.317 2.705
Number of obs: 950, groups: PatientID, 149

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.901075 0.689951 2.755 0.00586 **
ViralLoad -0.955590 0.212725 -4.492 7.05e-06 ***
Treatmentd4t+ddI -1.177377 1.103321 -1.067 0.28592
Treatmentswitch 0.101717 1.000221 0.102 0.91900
ViralLoad:Treatmentd4t+ddI 0.439794 0.308828 1.424 0.15443
ViralLoad:Treatmentswitch 0.008679 0.291170 0.030 0.97622

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) VirlLd Trt4+I Trtmnt VL:T4+
ViralLoad -0.780
Trtmntd4t+I -0.616 0.473
Trtmntswtch -0.679 0.521 0.423
VrlLd:Tr4+I 0.518 -0.657 -0.821 -0.355
VrlLd:Trtmn 0.549 -0.695 -0.341 -0.786 0.475

BONUS Exercise 9
In this exercise, we will first do a critical reading of the article from Kaguelidou et al. (2016) .

1. List the method elements that are missing from this article.

2. Read and discuss Table 3.

3. Load the R package bcrm and conduct an imaginary CRM trial interactive with the following code lines:

7

library(bcrm)
sdose <- c(1, 1.5, 2, 2.5, 3)
dose.label <- c(5, 10, 15, 25, 40, 50, 60)
p.tox0 <- c(0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05)
bcrm(stop = list(nmax = 42), p.tox0 = p.tox0, dose = dose.label, ff = "power", prior.
alpha = list(1,
 1, 1), target.tox = 0.3, start = 1)

1. Alain Combes et al., “Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress
Syndrome,” New England Journal of Medicine 378, no. 21 (2018): 1965–75, doi:10.1056/NEJMoa1800385
(https://doi.org/10.1056/NEJMoa1800385).↩

2. Ewan C. Goligher et al., “Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress
Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized
Clinical Trial,” JAMA 320, no. 21 (2018): 2251, doi:10.1001/jama.2018.14276
(https://doi.org/10.1001/jama.2018.14276).↩

3. Nicola D Crins et al., “Interleukin-2 Receptor Antagonists for Pediatric Liver Transplant Recipients: A
Systematic Review and Meta-Analysis of Controlled Studies,” Pediatric Transplantation 18, no. 8 (2014): 839–
50, doi:10.1111/petr.12362 (https://doi.org/10.1111/petr.12362).↩

4. Christian Röver, “Bayesian Random-Effects Meta-Analysis Using the Bayesmeta R Package,” Journal of
Statistical Software 93 (2020): 1–51, doi:10.18637/jss.v093.i06 (https://doi.org/10.18637/jss.v093.i06).↩

5. Joseph L. Fleiss and Jesse A. Berlin, “Effect Sizes for Dichotomous Data,” in The Handbook of Research
Synthesis and Meta-Analysis, 2nd Ed (New York, NY, US: Russell Sage Foundation, 2009), 237–53.↩

6. Jean-Michel Molina et al., “The ALBI Trial: A Randomized Controlled Trial Comparing Stavudine Plus
Didanosine with Zidovudine Plus Lamivudine and a Regimen Alternating Both Combinations in Previously
Untreated Patients Infected with Human Immunodeficiency Virus,” The Journal of Infectious Diseases 180, no.
2 (1999): 351–58, doi:10.1086/314891 (https://doi.org/10.1086/314891).↩

7. Florentia Kaguelidou et al., “Dose-Finding Study of Omeprazole on Gastric pH in Neonates with Gastro-
Esophageal Acid Reflux Using a Bayesian Sequential Approach,” ed. Imti Choonara, PLOS ONE 11, no. 12
(2016): e0166207, doi:10.1371/journal.pone.0166207 (https://doi.org/10.1371/journal.pone.0166207).↩

https://doi.org/10.1056/NEJMoa1800385
https://doi.org/10.1056/NEJMoa1800385
https://doi.org/10.1001/jama.2018.14276
https://doi.org/10.1001/jama.2018.14276
https://doi.org/10.1111/petr.12362
https://doi.org/10.1111/petr.12362
https://doi.org/10.18637/jss.v093.i06
https://doi.org/10.18637/jss.v093.i06
https://doi.org/10.1086/314891
https://doi.org/10.1086/314891
https://doi.org/10.1371/journal.pone.0166207
https://doi.org/10.1371/journal.pone.0166207

