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Summary. When testing for a rare disease, prevalence estimates can be highly sensitive to
uncertainty in the specificity and sensitivity of the test. Bayesian inference is a natural way to
propagate these uncertainties, with hierarchical modelling capturing variation in these parame-
ters across experiments. Another concern is the people in the sample not being representative
of the general population. Statistical adjustment cannot without strong assumptions correct for
selection bias in an opt-in sample, but multilevel regression and post-stratification can at least
adjust for known differences between the sample and the population.We demonstrate hierarchi-
cal regression and post-stratification models with code in Stan and discuss their application to
a controversial recent study of SARS-CoV-2 antibodies in a sample of people from the Stanford
University area. Wide posterior intervals make it impossible to evaluate the quantitative claims
of that study regarding the number of unreported infections. For future studies, the methods
described here should facilitate more accurate estimates of disease prevalence from imperfect
tests performed on non-representative samples.
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1. Background

Correction of diagnostic tests for false positive and false negative results is a well-known prob-
ability problem. When the base rate is low, estimates become critically sensitive to misclassifica-
tions (Hemenway, 1997). This issue hit the news recently (Lee, 2020), with a study of coronavirus
antibodies in a population with a low incidence rate.

This is a problem where not fully accounting for uncertainty can make a big difference in
scientific conclusions and potential policy recommendations. In early April 2020, Bendavid et al.
(2020a) recruited 3330 residents of Santa Clara County, California, and tested them for SARS-
CoV-2 antibodies. 50 people tested positively, yielding a raw estimate of 1.5%. After adjusting for
differences between sample and population in sex, ethnicity and zip code distributions, Bendavid
et al. (2020a) reported an uncertainty range of 2.5–4.2%, implying that the number of infections
in the county was between 50 and 85 times the count of cases reported at the time. Using an
estimate of the number of coronavirus deaths in the county up to that time, they computed an
implied infection fatality rate of 0.12–0.2%: much lower than infection fatality rates in the range
of 0.5–1% that had been estimated from areas with outbreaks of the disease.
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The estimates from Bendavid et al. (2020a) were controversial, and it turned out that they
did not correctly account for uncertainty in the specificity (true negative rate) of the test. There
was also concern about the adjustment that they performed for non-representativeness of their
sample. Thus, the controversy arose from statistical adjustment and assessment of uncertainty.
A revised preprint (Bendavid et al., 2020b) addressed some but not all of the problems with
the analysis. It is possible that Bendavid and his colleagues will prepare another analysis for
eventual publication.

In the present paper we set up a Bayesian framework to clarify these issues, specifying and
fitting models by using the probabilistic programming language Stan (Carpenter et al., 2017;
Stan Development Team, 2020). There is a long literature on Bayesian measurement error
models (see Gustafson (2003)) and their application to diagnostic testing (Greenland, 2009);
our contribution here is to set up the model, to supply code and to consider multilevel regression
and post-stratification, influence of hyperpriors and other challenges that arise in the problem
of estimating population prevalence by using test data from a sample of people.

2. Modelling a test with uncertain sensitivity and specificity

Testing for a rare disease is a standard textbook example of conditional probability, famous
for the following counterintuitive result. Suppose that a person tests positively for a disease,
based on a test that has a 95% accuracy rate, and further suppose that this person is sampled at
random from a population with a 1% prevalence rate. Then what is the probability that he or she
actually has the disease? The usual intuition suggests that the conditional probability should
be approximately 95%, but it is actually much lower, as can be seen from a simple calculation
of base rates, as suggested by Gigerenzer et al. (2007). Imagine that you test 1000 people. With
a 1% prevalence rate, we can expect that 10 have the disease and 990 do not. Then, with a
95% accuracy rate (assuming that this applies to both specificity and sensitivity of the test),
we would expect 0:95 × 10 = 9:5 true positive and 0:05 × 990 = 49:5 false positive results; thus,
the proportion of positive tests that are true positive results (i.e. the positive predictive value)
is 9:5=.9:5 + 49:5/ = 0:16: a number that is difficult to make sense of without visualizing the
hypothetical populations of true positive and false positive tests.

A related problem is to estimate the prevalence of the disease given the rate of positive tests.
If the population prevalence is π and the test has a specificity of γ and a sensitivity of δ, then
the expected frequency of positive tests p is

p=πδ + .1−π/.1−γ/:

Given known γ, δ and p, we can solve for the prevalence:

π = .p+γ −1/=.δ +γ −1/: .1/

If the properties of the test are known, but p is estimated from a random sample, we can ob-
tain a simple classical estimate by starting with a confidence interval for p and then propag-
ating it through the formula. For example, Bendavid et al. (2020a, b) reported 50 positive tests out
of 3330, which corresponds to an estimate p̂ = 50=3330 = 0:015 with standard error√{0:015.1−0:015/=3330}=0:002. Supposing that their test had a specificity of γ =0:995 and
a sensitivity of δ =0:80, this yields an estimate of .0:015+0:995−1/=.0:80+0:995−1/=0:013
with standard error 0:002=.0:80+0:995−1/=0:003.

Two immediate difficulties arise with the classical approach. First, if the observed rate p̂ is less
than 1−γ, the false positive rate of the test, then the estimate from equation (1) becomes mean-
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inglessly negative. Second, if there is uncertainty in the specificity and sensitivity parameters, it
becomes challenging to propagate uncertainty through the non-linear expression (1).

We can resolve both these problems with a simple Bayesian analysis (Gelman, 2020). First,
suppose that priors for sensitivity and specificity have been externally supplied. The model is
then

y ∼binomial.n, p/,

p= .1−γ/.1−π/+ δπ,
.2/

along with the specified prior distribution, p.γ, δ/. In this model, the parameters π, γ and δ
must be constrained to be between 0 and 1, and π must be given a prior distribution as well. A
natural starting point would be π ∼ uniform.0, 1/. In this case, previously existing knowledge
of the population prevalence was sufficiently weak that a reasonable prior on π should not have
much effect on the posterior. The three parameters π, γ and δ are not jointly identified from
only the number of positive test cases; hence the need for an informative prior on γ and δ. This
can be seen as a generalization of the usual approach of assuming that these parameters are
known exactly.

In the example of Bendavid (2020a), prior information on specificity and sensitivity was given
in the form of previous trials, specifically yγ negative results in nγ tests of known negative subjects
and yδ positive results from nδ tests of known positive subjects. This yields the model

y ∼binomial.n, p/,

p= .1−γ/.1−π/+ δπ,

yγ ∼binomial.nγ , γ/,

yδ ∼binomial.nδ, δ/:

We use uniform.0, 1/ priors on prevalence π, specificity γ and sensitivity δ, with the understand-
ing that they represent placeholders and could be augmented to include additional information.
Stan code is in Appendix A.1.

We fit the model by using the data reported in Bendavid et al. (2020a):

y=n=50=3330,

yγ=nγ =399=401,

yδ=nδ =103=122:

This results in high posterior uncertainty for the prevalence, π. Fig. 1(a) shows the joint posterior
simulations for π and γ: uncertainty in the population prevalence is in large part driven by
uncertainty in the specificity. Fig. 1(b) shows the posterior distribution for π, which reveals that
the data and model are consistent with prevalences as low as 0% and as high as 2%.

The asymmetric posterior distribution with its hard bound at zero suggests that the usual
central 95% interval will not be a good inferential summary. Instead we use the shortest posterior
interval for reasons discussed in Liu et al. (2015). (The shortest posterior interval is equivalent
to the highest posterior density interval for unimodal posteriors as we have here.) The resulting
95% interval for π is (0, 1.8%), which is much different from the intervals that were reported
by Bendavid et al. (2020a, b), with or without their correction for non-representativeness of the
sample. As a result, the substantive conclusion from that earlier report has been overturned.
From the given data, the uncertainty in the specificity is sufficiently large that the data do not
supply strong evidence of a substantial prevalence.
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Fig. 1. Summary of inference from a model with unknown specificity, sensitivity and prevalence, based on
data from Bendavid et al. (2020a): (a) scatterplot of posterior simulations of prevalence π and specificity γ;
(b) histogram of posterior simulations of γ; this model assumes that the testing sites are identical and thus
pools all data

3. Hierarchical model for varying testing conditions

The above analysis reveals that inference about specificity is key to precise estimation of low
prevalence rates. In the second version of their report, Bendavid et al. (2020b) included data
from 13 specificity studies and three sensitivity studies. Sensitivity and specificity can vary across
experiments, so it is not appropriate simply to pool the data from these separate studies; indeed,
these particular data are not consistent with constant error rates (Fithian, 2020). We allow the
parameters to vary according to a hierarchical model where, for any study j, the specificity γj

and sensitivity δj are drawn from normal distributions on the log-odds (or logistic) scale,

logit.γj/∼normal.μγ , σγ/,

logit.δj/∼normal.μδ, σδ/,

and the hyperparameters μ and σ can be estimated from the data. (The log-odds function is
defined by logit.p/= log{p=.1 −p/}:) Stan code is given in Appendix A.2. In general it could
make sense to allow correlation between γj and δj (Guo et al., 2017) but, the way that the
data are currently available to us, specificity and sensitivity are estimated from separate studies
and so there is no information about such a correlation. When coding the model, we use the
convention that j =1 corresponds to the study of interest, with other j>1 representing studies of
specificity or sensitivity given known samples. The parameters γ1 and δ1 represent the specificity
and sensitivity for the site performing the prevalence study (the 50/3330 positive tests of patients
with unknown status).

One could also consider alternatives to the logistic transform, which allows the unbounded
normal distribution to map to the unit interval but might not be appropriate for tests where the
specificity can actually reach the value of 1.

We fit the above hierarchical model to the data from Bendavid et al. (2020b), assigning a
uniform.0, 1/ prior toπ and weak normal+.0, 1/ priors toσγ and σδ (using the notation normal+
for the truncated normal distribution constrained to be positive). We often use half-normal or
half-t priors for variance parameters when we want to constrain them at the high end but allow
them to be arbitrarily close to 0 if the data support such inferences (Gelman, 2006). Setting the
scale of these half-normal priors to 1 makes the prior weak for this particular application, in
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Table 1. Summary of inferences (posterior median and shortest 95%
posterior interval) for the prevalence, specificity and sensitivity of the
Bendavid et al. (2020b) study, along with inferences for the hyper-
parameters characterizing the distribution of specificity and sensitivity
on the logistic scale†

Parameter (a) Posterior inference (b) Posterior inference
with weak prior with stronger prior

Median 95% interval Median 95% interval

Prevalence π 0.016 (0.000, 0.160) 0.016 (0.001, 0.021)
Specificity γ1 0.997 (0.987, 1.000) 0.995 (0.987, 0.999)
Sensitivity δ1 0.797 (0.065, 1.000) 0.821 (0.622, 0.959)
μγ 5.54 (4.43, 6.72) 5.234 (4.60, 5.91)
μδ 1.54 (0.24, 2.89) 1.54 (0.90, 2.22)
σγ 1.62 (0.82, 2.61) 0.72 (0.26, 1.15)
σδ 0.87 (0.11, 2.16) 0.39 (0.00, 0.73)

†(a) For the model with weak priors for σγ and σδ , the posterior inference
for the prevalence, π, is highly uncertain. This is driven by uncertainty in
the sensitivity, which in turn is driven by uncertainty in the hyperparame-
ters for the sensitivity distribution. (b) Stronger priors on σγ and σδ have
the effect of regularizing the specificity and sensitivity parameters, lead-
ing to narrower intervals for π, the parameter of interest in this study. The
hyperparameters μ and σ are on the logistic scale and thus are difficult to
interpret without transformation.

the following sense. A shift of 1 on the logit scale represents quite a big change in sensitivity or
specificity. For example, logit.0:8/=1:4, so if 0.8 is a typical value of sensitivity, and if σδ =1,
then we would expect sensitivities to vary by roughly ±1 standard deviation, or 0.4–2.4 on
the logit scale, which corresponds to a probability range from 0.60 to 0.92. The normal+.0, 1/

hyperpriors weakly pull the specificities and sensitivities from different studies towards each
other, while allowing for a large variation if required by the data.

In addition we need priors on μγ and μδ. In this particular example, once we have constrained
the variation in the specificities and sensitivities, enough data are available to estimate these
population means with uniform priors on these parameters, but in general it is best to use
prior information to constrain them at least roughly. For this example, we assign independent
normal.4, 2/ priors, a distribution that puts two-thirds of its mass in the range 4 ± 2, which,
after undoing the logistic transformation, corresponds to .0:881, 0:997/ on the probability scale,
which seems like a suitably broad range for the mean of the population distribution of specificity
and sensitivity of these tests.

The resulting posterior inference is shown in Table 1, part (a). The 95% posterior interval
for the prevalence is now .0:000, 0:160/. Where does that upper bound come from: how could
an underlying prevalence of 16% be plausible, given that only 1.5% of the people in the sample
tested positively? The answer can be seen from the large uncertainty in the sensitivity parameter,
which in turn comes from the possibility that σδ is very large. The trouble is that the sensitivity
information in these data comes from only three experiments, which are not enough to obtain
a good estimate of the underlying distribution. This problem has been discussed by Guo et al.
(2017).

The only way to make progress here is to constrain the sensitivity parameters in some way.
One possible strong assumption is to assume that σδ is some small value. This could make sense
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in the current context, as we can consider it as a relaxation of the assumption of Bendavid et al.
(2020b) that σδ =0. We also have reason to believe that specificity will not vary much between
experiments, so we shall apply a soft constraint to the variation in specificities as well.

Instead of specifying σδ, we give it an informative prior distribution. In particular, we replace
the weakly informative normal+.0, 1/ priors on σγ and σδ with something stronger: σγ , σδ ∼
normal+.0, 0:3/. To obtain a sense of what this means, start with the point estimate from Table
1, part (a), of μδ, which is 1.58. If σδ were 0.3, then there would be a roughly 2

3 chance that
the sensitivity in a new experiment is in the range logit−1.1:58±0:3/, which is .0:78, 0:87/. This
seems reasonable.

Table 1, part (b), shows the results. Our 95% interval for π is now .0:001, 0:021/, i.e. the
infection rate is estimated to be somewhere between 0.1% and 2.1%.

4. Prior sensitivity analysis

To assess the sensitivity of the above prevalence estimate to the priors placed on σγ and σδ, we
consider the family of prior distributions,

σγ ∼normal+.0, τγ/,

σδ ∼normal+.0, τδ/,

where τδ and τγ are user-specified hyperparameters. Setting τδ and τγ to 0 would force σδ and
σγ to be 0 and would enforce complete pooling, corresponding to the assumption of Bendavid
et al. (2020b) that each test site has identical specificity and sensitivity. As the hyperparameters
are increased, the scales of variation of σγ and σδ are allowed to vary more, and setting τγ and τδ

to ∞ would typically be considered non-informative in the sense of providing the least amount
of constraint on the sensitivities and specificities. In practice, we often use normal+.0, 1/ priors
for hierarchical scale parameters, on the default assumption that the underlying parameters (in
this case, the specificities) will probably vary by less than 1 on the logit scale.

For this problem, however, a weak prior does not work: as shown in part (a) of Table 1, the
resulting inferences for the sensitivities are hopelessly wide. We do not believe that these tests
have specificities below 50%, yet such a possibility is included in the posterior distribution, and
this in turn propagates to inappropriately wide intervals for the prevalence, π. As explained
in the previous section, that is why we assigned a stronger prior, using hyperprior parameters
τγ = τδ =0:3.

Fig. 2 shows how these hyperprior parameters τγ and τδ affect inferences for the prevalence
π. The posterior median of π is not sensitive to the scales τγ and τδ of the hyperpriors, but the
uncertainty in that estimate, as indicated by the central posterior 90% intervals, is influenced by
these settings. In particular, in the graphs on the right-hand side, when the sensitivity hyperprior
parameter τδ is given a high value, the upper end of the interval is barely constrained. The lower
end of the interval is fairly stable, as long as the specificity hyperprior parameter τγ is not
given an artificially low value. Here we are using central rather than shortest posterior intervals
because we are displaying inference on the log-scale and so there is no boundary.

When τγ and τδ are too low, the variation in specificity and sensitivity are constrained to
be nearly 0, all values are pooled and uncertainty is artificially deflated. As the hyperprior
parameters are increased, the uncertainty in prevalence increases. This grows out of hand when
the hyperprior for sensitivity is increased, because there are only three data points to inform the
distribution that it controls. This is an example of the general principle that wide hyperpriors on
hierarchical scale parameters can pull most of the probability mass into areas of wide variation
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Fig. 2. Plots of the posterior median and central 90% posterior interval of the prevalence π as a function of
τγ and τδ , the prior scales for the specificity and sensitivity hyperparameters σγ and σδ (the posterior median
of prevalence is not sensitive to τγ and τδ , but the end points of the 90% interval show some sensitivity;
it is possible to use a weak hyperprior on the scale of the specificity distribution, σγ , which makes sense
given that there are 13 prior specificity studies in the data; for the scale of the sensitivity distribution, σδ , it is
necessary to use a prior scale of 0.5 or less to rule out effectively the possibility of extremely high prevalence
corresponding to an unrealistic sensitivity parameter γ; the noise in (e) represents Monte Carlo error that is
a consequence of the weakly specified model): (a) sensitivity hyperprior 0.01; (b) sensitivity hyperprior 0.25;
(c) sensitivity hyperprior 0.5; (d) sensitivity hyperprior 0.75; (e) sensitivity hyperprior 1

and dominate the data, leading to inflated uncertainty. Around the middle of these ranges, the
posterior intervals are not as sensitive to variation in the hyperpriors. We would consider values
τγ = τδ =0:5 to be weakly informative for this example, in that they are roughly consistent with
intersite variation in specificity in the range 73–99.3% and of specificity in the range 88–99.75%.

The complexity of this sensitivity analysis might seem intimidating: if Bayesian inference is
this difficult and thus dependent on priors, is it maybe not a good idea?

We would argue that the problem is not as difficult as it might look. The steps that were taken
in Sections 2 and 3 show the basic workflow: we start with a simple model; then add hierarchical
structure. For the hierarchical model we started with weak priors on the hyperparameters and
examined the inferences, which made us realize that we had prior information (that specificities
and sensitivities of the tests should not be so variable), which we then incorporated in the next
iteration of the model. Performing the sensitivity analysis was fine—it helped us to understand
the inferences better—but it was not necessary for us to obtain reasonable inferences.

Conversely, non-Bayesian analyses would not be immune from this sensitivity to model
choices, as is illustrated by the mistakes that were made by Bendavid et al. (2020b) to treat
specificity and sensitivity as not varying at all, to set σγ =σδ =0 in our notation. An alternative
could be to use the calibration studies to obtain point estimates of σγ and σδ, but then there
would still be the problem of accounting for uncertainty in these estimates, which would return
the researchers to the need for some sort of external constraint or bound on the distribution
of the sensitivity parameters δj, given that only three calibration studies are available here to
estimate these. This in turn suggests the need for more data or modelling of the factors that influ-
ence the test’s specificity and sensitivity. In short, the analysis that is shown in Fig. 2 formalizes
a dependence on prior information that would arise, explicitly or implicitly, in any reasonable
analysis of these data.

5. Extensions of the model

5.1. Multilevel regression and post-stratification to adjust for differences between
sample and population
Bendavid et al. (2020a, b) compared demographics on 3330 people whom they tested, and they
found differences in the distributions of sex, age, ethnicity and zip code of residence compared
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with the general population of Santa Clara County. It would be impossible to post-stratify the
raw data on two sexes, four ethnicity categories, four age categories and 58 zip codes, as the
resulting 1856 cells would greatly outnumber the positive tests in the data. They obtained pop-
ulation estimates by adjusting for sex × ethnicity × zip code, but their analysis is questionable,
first because they did not adjust for age, and second because of noisy weights arising from the
variables that they did adjust for. To obtain stable estimates while adjusting for all these vari-
ables, we recommend applying a multilevel model to the exposure probability, thus replacing
the constant π in the above models with something like the following logistic regression (x[i]
and xi are used interchangeably to improve readability):

πi = logit−1.β1 +β2 malei +β3 x
zip
zip[i] +αeth

eth[i] +α
age
age[i] +α

zip
zip[i]/, .3/

where male is a variable that takes on the value 0 for women and 1 for men, xzip is a relevant
predictor at the zip code level, eth[i], age[i] and zip[i] are index variables for survey respondent i,
the β-parameters are logistic regression coefficients and the α-parameters are vectors of varying
intercepts. These varying intercepts have hierarchical priors

αname ∼normal.0, σname/, for name∈{eth, age, zip}:

In the regression model (3), it is important to include the predictor xzip, which in this example
might be the percentage Latino or average income in the zip code. Otherwise, with so many zip
codes, the multilevel model will just partially pool most of the zip code adjustments to zero, and
not much will be gained from the geographic post-stratification. The importance of geographic
predictors is well known in the multilevel regression and post-stratification literature; see, for
example Caughey and Warshaw (2019).

In addition, priors are needed for σeth, σage, σzip and β, along with the hierarchical speci-
ficity and sensitivity parameters from the earlier model. For these hyperparameters, we assign
normal+.0, 0:5/ priors for σeth, σage and σzip. These priors allow the prevalence to vary moder-
ately by these post-stratification factors.

We use a unit logistic prior for the centred intercept β1 +β2 male+β3 x̄zip (corresponding to
an uniform.0, 1/ prior distribution for the probability that an average person in the sample has
the antibody), a normal.0, 0:5/ prior for β2 and a normal.0, 0:5=szip/ for β3, where szip is the
standard deviation of xzip in the data.

The point of the scaling of β2 and β3 is to give some prior regularization on the contribution
of each predictor in the data. Regarding the prior on the intercept, Stan allows direct assignment
of distributions to transformed parameters; in this particular case, the transform is affine and
thus does not require a Jacobian adjustment. By assigning prior distributions to the centred
intercept and two other regression coefficients, we have implicitly assigned a prior distribution
to the three parameters, .β1, β2, β3/.

We code the model in Stan; see Appendix A.3. Unfortunately the raw data from Bendavid
et al. (2020a,b) are not currently available, so we fit the model to simulated data to check the
stability of the computation.

The above model is a start; it could be improved by including interactions, following the
general ideas of Ghitza and Gelman (2013). In any case, once this model has been fitted, it can
be used to make inferences for disease prevalence for all cells in the population. As discussed
by Johnson (2020), these cell estimates can then be summed, weighting by known population
totals (in this case, the number of people in each sex × ethnicity × age × zip code category in
the population) to obtain inferences for the prevalence in the county,
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pavg =

∑

j

Njπj

∑

j

Nj
,

where Nj is the number of people in cell j in the general population, and πj is the prevalence
in cell j as computed from the logistic model. We perform this summation in the generated
quantities block of the Stan model in Appendix A.3.

5.2. Variation across location and over time

The aforementioned Santa Clara County study is just one of many recent SARS-CoV-2 antibody
surveys. Other early studies were conducted in Boston, New York, Los Angeles and Miami,
and in various places outside the USA, and we can expect many more in the future. If the
raw data from these studies were combined, it should be possible to estimate the underlying
prevalences from all these studies by using a hierarchical model, allowing specificity, sensitivity
and prevalence to vary by location, and adjusting for non-sampling error where possible. Such
an analysis was performed by Levesque and Maybury (2020) using detailed information on the
different tests used in different studies.

We shall also be seeing more studies of changing infection rates over time. Stringhini et al.
(2020) performed such an analysis of weekly surveys in Geneva, Switzerland, accounting for
specificity and sensitivity and post-stratifying by sex and age.

5.3. Including additional diagnostic data
We have so far assumed that test results are binary, but additional information can be gained
from continuous measurements that make use of partial information when data are near de-
tection limits (Gelman et al., 2004; Bouman et al., 2020). Further progress can be made by
performing different sorts of tests on study participants or retesting observed positive re-
sults.

Another promising direction is to include additional information on people in the study, e.g.
from self-reported symptoms. Some such data were reported in Bendavid et al. (2020b), although
not at the individual level. With individual level symptom and test data, a model with multiple
outcomes could yield substantial gains in efficiency compared with the existing analysis using
only a single positive or negative test result on each participant.

A third direction would be to acquire test results from sites testing both known positive
and known negative cases. With such tests, bivariate priors for sensitivity and specificity could
be formulated as suggested by Guo et al. (2017). Simple multivariate normal priors are pos-
sible, but the situation is complicated because, in general, sensitivity is negatively correlated
with specificity in diagnostic tests, but above or below average testing quality at the sites
will provide positive correlation. Thus it may be better to formulate priors in terms of bias
(trading sensitivity for specificity) and accuracy instead of directly in terms of sensitivity and
specificity.

6. Non-Bayesian approaches

As with any statistical analysis, alternative approaches are possible that would use the same
information and give similar results.
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In Section 2, it was necessary to account for uncertainty in all three parameters, while re-
specting the constraint that all three probabilities had to be between 0 and 1. We assume that
both these aspects of the model could be incorporated in a non-Bayesian approach by working
out the region in the space of .π, γ, δ/ that is consistent with the data and then constructing a
family of tests which could be inverted to create confidence regions.

This could be expanded into a multilevel model as in Section 3 by considering the specificities
and sensitivities of the different experiments as missing data and averaging over their distri-
bution, but still applying non-Bayesian inference to the resulting hyperparameters. The wide
uncertainty intervals from the analysis in Section 3 suggest that some constraints or regular-
ization or additional information on the hyperparameters would be necessary to obtain stable
inferences here, no matter what statistical approach is used.

Fithian (2020) performed a non-Bayesian analysis of the data from Bendavid et al. (2020b),
coming to the same basic conclusion as we do, demonstrating that the calibration data are
incompatible with a model of constant specificity and that, once the specificity is allowed to
vary, the observed rate of positive tests in the Santa Clara study does not allow rejection of the
null hypothesis of zero infection rate. Had it been possible to reject zero, this would not be the
end of the story: at that point one could invert a family of tests to obtain a confidence region,
as noted above.

Finally, some rough equivalent to the post-stratification adjustment in Section 5.1 could be
performed by using a non-Bayesian weighting approach, using some smoothing to avoid the
noisiness of raw post-stratification weights. Similarly, non-Bayesian methods could be used to
fit regressions, allowing prevalence to vary over location and time.

7. Discussion

7.1. Limitations of the statistical analysis
Epidemiology in general, and disease testing in particular, features latent parameters with high
levels of uncertainty, difficulty in measurement and uncertainty about the measurement process
as well. This is the sort of setting where it makes sense to combine information from multiple
studies, using Bayesian inference and hierarchical models, and where inferences can be sensitive
to assumptions.

The biggest assumptions in this analysis are, first, that the historical specificity and sensitivity
data are relevant to the current experiment, and, second, that the people in the study are a rep-
resentative sample of the general population. We addressed the first concern with a hierarchical
model of varying sensitivities and specificities, and we addressed the second concern with mul-
tilevel regression and post-stratification on demographics and geography. But this modelling
can take us only so far. If there is hope or concern that the current experiment has unusual
measurement properties, or that the sample is unrepresentative in ways that are not accounted
for in the regression, then more information or assumptions need to be included in the model,
as described by Campbell et al. (2020).

The other issue is that there are choices of models, and tuning parameters within each model.
Sensitivity to the model is apparent in Bayesian inference, but it would arise with any other sta-
tistical method as well. For example, Bendavid et al. (2020a) used an (incorrectly applied) delta
method to propagate uncertainty, but this is problematic when the sample size is low and proba-
bilities are near 0 or 1. Bendavid et al. (2020b) completely pooled their specificity and sensitivity
experiments, which is equivalent to setting σγ and σδ to 0. And their weighting adjustment has
many arbitrary choices. We note these not to single out these particular researchers but rather to
emphasize that, at least for this problem, all statistical inferences involve user-defined settings.
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For the models in the present paper, the most important user choices are

(a) what data to include in the analysis,
(b) prior distributions for the hyperparameters and
(c) the structure and interactions to include in the multilevel regression post-stratification

model.

For these reasons, it would be difficult to set up the model as a ‘plug-and-play’ system where
users can just enter their data, push a button and obtain inferences. Some active participation
in the modelling process is required, which makes sense given the sparseness of the data. When
studying populations with higher prevalences and with data that are closer to random samples,
more automatic approaches might be possible.

7.2. Santa Clara study
Section 3 shows our inferences given the summary data in Bendavid et al. (2020b). The inference
depends strongly on the priors on the distributions of sensitivity and specificity, but that is
unavoidable: the only way to avoid this influence of the prior would be to sweep it under the
rug, e.g. by just assuming a zero variation in the test parameters.

What do we conclude about the claims regarding the rate of coronavirus exposure and impli-
cations for the infection fatality rate? It is difficult to say from this one study: the numbers in
the data are consistent with zero infection rate and a wide variation in specificity and sensitivity
across tests, and the numbers are also consistent with the claims that were made in Bendavid
et al. (2020a,b). That does not mean that anyone thinks that the true infection rate is 0. It just
means that more data, assumptions and subject matter knowledge are required. That is to be
expected—people usually make many assumptions in analysing this sort of laboratory assay.
It is common practice to use the manufacturer’s numbers on specificity, sensitivity, detection
limit, and so forth, and not to worry about that level of variation. Only when estimating a very
low underlying rate do the statistical challenges become so severe. This is an example of the
general phenomenon in statistics that the severity of identification problems can depend on the
data.

For now, we do not think that the data support the claim that the number of infections in
Santa Clara County was between 50 and 85 times the count of cases reported at the time, or the
implied interval for the infection fatality rate of 0.12–0.2%. These numbers are consistent with
the data, but the data are also consistent with a nearly zero infection rate in the county. The
data of Bendavid et al. (2020a, b) do not provide strong evidence about the number of people
infected or the infection fatality ratio; the number of positive tests in the data is just too small,
given uncertainty in the specificity of the test.

The analyses in this paper suggest that future studies should be conducted with full awareness
of the challenges of measuring specificity and sensitivity, that relevant variables be collected on
study participants to facilitate inference for the general population and that (deidentified) data
be made accessible to external researchers.
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Appendix A: Stan programs

A.1. Model with binomial data on specificity and sensitivity

data {
int<lower = 0> y sample;
int<lower = 0> n sample;
int<lower = 0> y spec;
int<lower = 0> n spec;
int<lower = 0> y sens;
int<lower = 0> n sens;

}
parameters {

real<lower=0, upper = 1> p;
real<lower=0, upper = 1> spec;
real<lower=0, upper = 1> sens;

}
model {

real p sample = p Å sens + (1 - p) Å (1 - spec);
y sample ∼ binomial(n sample, p sample);
y spec ∼ binomial(n spec, spec);
y sens ∼ binomial(n sens, sens);

}

A.2. Hierarchical model for specificities and sensitivities

data {
int<lower = 0> y sample;
int<lower = 0> n sample;
int<lower = 0> J spec;
int<lower = 0> y spec[J spec];
int<lower = 0> n spec[J spec];
int<lower = 0> J sens;
int<lower = 0> y sens[J sens];
int<lower = 0> n sens[J sens];
real<lower = 0> logit spec prior cale;
real<lower = 0> logit sens prior scale;

}
parameters {

real<lower = 0, upper = 1> p;
real mu logit spec;
real mu logit sens;
real<lower = 0> sigma logit spec;
real<lower = 0> sigma logit sens;
vector<offset = mu logit spec, multiplier = sigma logit spec>[J spec] logit spec;
vector<offset = mu logit sens, multiplier = sigma logit sens>[J sens] logit sens;

}
transformed parameters {

vector[J spec] spec = inv logit(logit spec);
vector[J sens] sens = inv logit(logit sens);

}
model {

real p sample = p Å sens[1] + (1 − p) Å (1 − spec[1]);
y sample ∼ binomial(n sample, p sample);
y spec ∼ binomial(n spec, spec);
y sens ∼ binomial(n sens, sens);
logit spec ∼ normal(mu logit spec, sigma logit spec);
logit sens ∼ normal(mu logit sens, sigma logit sens);
sigma logit spec ∼ normal(0, logit spec prior scale);
sigma logit sens ∼ normal(0, logit sens prior scale);
mu logit spec ∼ normal(4, 2); // weak prior on mean of distribution of spec
mu logit sens ∼ normal(4, 2); // weak prior on mean of distribution of sens

}
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A.3. Multilevel regression and post-stratification

data {
int<lower = 0> N; // number of tests in the sample (3330 for Santa Clara)
int<lower = 0, upper = 1> y[N]; // 1 if positive, 0 if negative
vector<lower = 0, upper = 1>[N] male; // 0 if female, 1 if male
int<lower = 1, upper = 4> eth[N]; // 1=white, 2=asian, 3=hispanic, 4=other
int<lower = 1, upper = 4> age[N]; // 1=0−4, 2=5−18, 3=19−64, 4=65+
int<lower = 0> N zip; // number of zip codes (58 in this case)
int<lower = 1, upper = N zip> zip[N]; // zip codes 1 through 58
vector[N zip] x zip; // predictors at the zip code level
int<lower = 0> J spec;
int<lower = 0> y spec [J spec];
int<lower = 0> n spec [J spec];
int<lower = 0> J sens;
int<lower = 0> y sens [J sens];
int<lower = 0> n sens [J sens];
int<lower = 0> J; // number of population cells, J = 2Å4Å4Å58
vector<lower = 0>[J] N pop; // population sizes for poststratification
real<lower = 0> coef prior scale;
real<lower = 0> logit spec prior scale;
real<lower = 0> logit sens prior scale;

}
parameters {

real mu logit spec;
real mu logit sens;
real<lower = 0> sigma logit spec;
real<lower = 0> sigma logit sens;
vector<offset = mu logit spec, multiplier = sigma logit spec>[J spec] logit spec;
vector<offset = mu logit sens, multiplier = sigma logit sens>[J sens] logit sens;
vector[3] b; // intercept, coef for male, and coef for x zip
real<lower = 0> sigma eth;
real<lower = 0> sigma age;
real<lower = 0> sigma zip;
vector<multiplier = sigma eth>[4] a eth; // varying intercepts for ethnicity
vector<multiplier = sigma age>[4] a age; // varying intercepts for age category
vector<multiplier = sigma zip>[N zip] a zip; // varying intercepts for zip code

}
transformed parameters {

vector[J spec] spec = inv logit(logit spec);
vector[J sens] sens = inv logit(logit sens);

}
model {

vector[N] p = inv logit(b[1]
+ b[2] Å male
+ b[3] Å x zip[zip]
+ a eth[eth]
+ a age[age]
+ a zip[zip]);

vector[N] p sample = p Å sens[1] + (1 - p) Å (1 - spec[1]);
y ∼ bernoulli(p sample);
y spec ∼ binomial(n spec, spec);
y sens ∼ binomial(n sens, sens);
logit spec ∼ normal(mu logit spec, sigma logit spec);
logit sens ∼ normal(mu logit sens, sigma logit sens);
sigma logit spec ∼ normal(0, logit spec prior scale);
sigma logit sens ∼ normal(0, logit sens prior scale);
mu logit spec ∼ normal(4, 2); // weak prior on mean of distribution of spec
mu logit sens ∼ normal(4, 2); // weak prior on mean of distribution of sens
a eth ∼ normal(0, sigma eth);
a age ∼ normal(0, sigma age);
a zip ∼ normal(0, sigma zip);
// prior on centered intercept
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b[1] + b[2] Å mean(male) + b[3] Å mean(x zip[zip]) ∼ logistic(0, 1);
b[2] ∼ normal(0, coef prior scale);
b[3] ∼ normal(0, coef prior scale / sd(x zip[zip])); // prior on scaled coef
sigma eth ∼ normal(0, coef prior scale);
sigma age ∼ normal(0, coef prior scale);
sigma zip ∼ normal(0, coef prior scale);

}
generated quantities {

real p avg;
vector[J] p pop; // population prevalence in the J poststratification cells
int count;
count = 1;
for (i zip in 1:N zip) {

for (i age in 1:4) {
for (i eth in 1:4) {

for (i male in 0:1) {
p pop[count] = inv logit(b[1]

+ b[2] Å i male+
+ b[3] Å x zip[i zip]
+ a eth[i eth]
+ a age[i age]
+ a zip[i zip]);

count += 1;
}

}
}

}
p avg = sum(N pop .Å p pop) / sum(N pop);

}
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