Bayesian methods in biomedical research Part III: Bayesian computation

Boris Hejblum https://bayesbiomed.borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen April 11th, 2024

Introduction

Estimating the *posterior* distribution is often costly

MCMC in pratice 00000000000000

Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but are key to its successful application

Direct samplin

MCMC Algorithms 00000000000000

Multidimensional parameters

Numerical integration – I

Real world applications: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$

 \Rightarrow joint *posterior* distribution of all *d* parameters

▲ hard to compute:

- complexe likelihood
- integrating constant $f(\mathbf{y}) = \int_{\Theta^d} f(\mathbf{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta}$

• . . .

Analytical form rarely available

- \Rightarrow numerical computations: integral of *d* multiplicity
 - difficult when d is big (numerical issues as soon as d > 4)

Multidimensional parameters

Numerical integration – II

Even dimension 1 can be tough !

Example :

Let x_1, \ldots, x_n *iid* according to a Cauchy distribution $\mathscr{C}(\theta, 1)$ with prior $\pi(\theta) = \mathscr{N}(\mu, \sigma^2)$ (μ and σ known)

$$p(\theta|x_1,\ldots,x_n) \propto f(x_1,\ldots,x_n|\theta)\pi(\theta)$$
$$\propto e^{-\frac{(\theta-\mu)^2}{2\sigma^2}} \prod_{i=1}^n (1+(x_i-\theta)^2)^{-1}$$

 $\underline{\wedge}$ normalizing constant has no analytical form \Rightarrow no analytical form for this *posterior* distibution

Multidimensional parameters

Marginal *posterior* distributions

Objective: draw conclusion based on the joint posterior distribution

 \Rightarrow probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\land}$ Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the parameter

 \Rightarrow a sufficiently precise computation seems unrealistic

Multidimensional parameters

Marginal *posterior* distributions

Objective: draw conclusion based on the joint posterior distribution

 \Rightarrow probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\land}$ Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the **parameter**

 \Rightarrow a sufficiently precise computation seems unrealistic

Algorithms based on **sampling simulations** especially **Markov chain Monte Carlo** (MCMC)

Direct samplin

MCMC Algorithms

MCMC in pratice 000000000000000

Computational Bayesian statistics

Computational solutions

Bayes Theorem \Rightarrow *posterior* distribution

Direct samplin

MCMC Algorithms 00000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Computational solutions

Bayes Theorem \Rightarrow *posterior* distribution

 \wedge in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

© B. Hejblum

Computational Bayesian statistics

Computational solutions

Bayes Theorem \Rightarrow *posterior* distribution

 $\underline{\wedge}$ in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

How can one estimate the *posteriori* distribution ?

- \Rightarrow sample according to this posterior distribution
 - direct sampling
 - Markov chain Monte Carlo (MCMC)

Computational Bayesian statistics

Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

 \Rightarrow use random numbers to compute quantities whose analytical computation is hard (or impossible)

Computational Bayesian statistics

Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

 \Rightarrow use random numbers to compute quantities whose analytical computation is hard (or impossible)

• Law of Large Numbers (LLN)

so-called "Monte Carlo sample"

⇒ compute various functions from that sample distribution

Example : One wants to compute
$$\mathbb{E}[f(X)] = \int f(x)p_X(x)dx$$

If $x_i \stackrel{iid}{\sim} p_X$, $\mathbb{E}[f(X)] = \frac{1}{N} \sum_{i=1}^N f(x_i)$ (LLN)
 \Rightarrow if one knows how to sample from p_X , one can then estimate $\mathbb{E}[f(X)]$

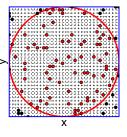
Direct samplir

MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:



A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square: $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points {(x₁₁, x₂₁),..., (x_{1n}, x_{2n})} = {P₁,..., P_n} on the 36 × 36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- ⇒ Compute the ratio (estimated probability of being inside the disk while in the square): $\hat{p}_C = \frac{\sum P_i \in circle}{n}$

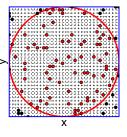
Direct samplir

MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:



A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square: $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points {(x₁₁, x₂₁),..., (x_{1n}, x_{2n})} = {P₁,..., P_n} on the 36 × 36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- ⇒ Compute the ratio (estimated probability of being inside the disk while in the square): $\hat{p}_C = \frac{\sum P_i \in circle}{n}$

Direct samplii

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

A casino *roulette* (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk : $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled *n*: $\lim_{n \to +\infty} \hat{p}_C = p_C = \pi/4$ (LLN)

(C) B. Hejblum

Direct samplii

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

A casino *roulette* (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk : $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled *n*: $\lim_{n \to +\infty} \hat{p}_C = p_C = \pi/4$ (LLN)

Monte Carlo sample \Rightarrow compute various functions e.g. $\pi = 4 \times$ the probability of being inside the disk Direct sampling

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Computational Bayesian statistics

Your turn !

Practical: exercise 2

Direct sampling methods

MCMC in pratice 00000000000000

Generating random numbers from common probability distributions

Random & pseudo-random numbers

There exist several ways to generate so-called "random" numbers according to known distributions

NB: computer programs do not generate truly random numbers

Rather **pseudo-random**, which seem random but are actually generated by a deterministic process (depending on a "**seed**" parameter).

Generating random numbers from common probability distributions

Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers according to the Uniform distribution on [0,1] (Lehmer, 1948)

with y_0 the "seed", i.e. the starting point

<u>Remark:</u> $0 \le y_n \le m - 1 \Rightarrow$ in practice *m* very large (e.g. 2¹⁹⁹³⁷, default in **R** which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on $\left[0,1\right]$ will be considered reliable and used by the different sampling algorithms

Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathscr{U}_{[0,1]}$

Direct sampling

MCMC Algorithms

MCMC in pratice 0000000000000000

Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p) :

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$
$$X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$$

Direct sampling 00€0000 MCMC Algorithms

MCMC in pratice 0000000000000000

Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p) :

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$
$$X = \sum_{i=1}^n Y_i \sim Bin(n, p)$$

Normal $\mathcal{N}(0,1)$ (Box-Müller algorithm):

 U_1 and U_2 are 2 independent uniform variables on [0;1]

$$Y_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
$$Y_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

 \Rightarrow Y_1 & Y_2 are independent random variables each following a $\mathcal{N}(0,1)$

Sampling according to a distribution defined analytically

Inverse transform sampling

<u>**Definition**</u>: For a function F defined on \mathbb{R} , its generalized inverse is defined as: $F^{-1}(u) = \inf\{x \text{ such that } F(x) > u\}$

11/42

Sampling according to a distribution defined analytically

Inverse transform sampling

<u>**Definition**</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ such that } F(x) > u\}$

Property: Let • *F* be a cumulative probability distribution function • *U* be a uniform random variable on [0,1]Then $F^{-1}(U)$ defines a random variable whith cumulative probability distribution function *F*

- If 1 one knows F, the cumulative probability distribution function from which to sample
 - 2 one can invert F
- \Rightarrow then one can sample this distribution from a uniform sample on [0,1]

Direct sampling ○○○○●○○ MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

12/42

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 - \exp(-\lambda x)$

Let F(x) = u

Then $x = \dots$

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 - \exp(-\lambda x)$

Let
$$F(x) = u$$

Then $x = -\frac{1}{\lambda}\log(1-u)$
 \Rightarrow and if $U \sim U_{[0;1]}$, then $X = F^{-1}(U) = -\frac{1}{\lambda}\log(1-U) \sim E(\lambda)$

Direct sampling

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

Your turn !

Practical: exercise 3

Sampling according to a distribution defined analytically

Acceptance-rejection method

Use an **instrumental distribution** g (which we know how to sample from) \Rightarrow to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Sampling according to a distribution defined analytically

Acceptance-rejection method

Use an **instrumental distribution** g (which we know how to sample from) \Rightarrow to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Let f be the targeted density function Let g be a proposal density function (from which one knows how to sample) such that, for all x: $f(x) \le Mg(x)$ While $i \le n$: 1 Sample $x_i \sim g$ and $u_i \sim \mathscr{U}_{[0,1]}$ 2 If $u_i \le \frac{f(x_i)}{Mg(x_i)}$, **accept** the draw: $y_i := x_i$ else **reject** it and return to 1.

$$\Rightarrow (y_1, \dots, y_n) \stackrel{iid}{\sim} f$$

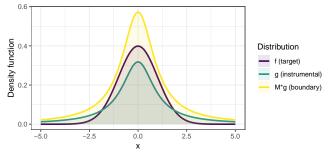
Direct sampling

MCMC Algorithms

MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

Acceptance-rejection: importance of the proposal



Example of a proposal and a target ditribution for the accept-reject algorithm

Remark: The smaller *M*, the greater acceptance rate

 \Rightarrow the more the algorithm is efficient at sampling from f (less iterations for a sample size n)

So one wishes g the as close as possible to f !

 $\underline{\land} g$ will necessarily have heavier tail than the target

⇒ when the number of parameters increases, acceptance rate decrease svery rapidly (curse of dimension)

14/42

Direct samplin 0000000 MCMC Algorithms

Markov chain definition

Markov chain: discrete time stochastic process

Definition: a series of random variables $X_0, X_1, X_2, ...$ (all valued over the same state space) with the "memoryless" **Markov property**: $p(X_i = x | X_0 = x_0, X_1 = x_1, ..., X_{i-1} = x_{i-1}) = p(X_i = x | X_{i-1} = x_{i-1})$

The set E of all possible values of X_i is called the **state space**

2 parameters:

- 1 initial distribution $p(X_0)$
- 2 tansition probabilities $T(x, A) = p(X_i \in A | X_{i-1} = x)$

NB: only **homogeneous** Markov chains considered here: $p(X_{i+1} = x | X_i = y) = p(X_i = x | X_{i-1} = y)$ Direct samplin

MCMC Algorithms

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

Property: a Markov chain is **recurrent** if the trajectories (X_i) pass an infinite number of times in any set of non-zero probability of the state space

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

Property: a Markov chain is **recurrent** if the trajectories (X_i) pass an infinite number of times in any set of non-zero probability of the state space

Property: a Markov chain is **aperiodic** if nothing induces periodic behavior of the trajectories

Stationary law & ergodic theorem

<u>Definition</u>: A probability distribution \tilde{p} is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$, then $X_{i+j} \sim \tilde{p} \ \forall j \ge 1$

Remark: a Markov chain can admit several stationary laws

Stationary law & ergodic theorem

<u>Definition</u>: A probability distribution \tilde{p} is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$, then $X_{i+j} \sim \tilde{p} \ \forall j \ge 1$

Remark: a Markov chain can admit several stationary laws

Ergodic theorem (infinite space): A positive irreducible and recurrent Markov chain admits a single invariant probability distribution \tilde{p} and converges towards it

Markov chain example (discrete state space) – I

A Baby follows a Markov chain every minute with 3 states:

- S sleep
- E eat
- D diaper change
- \Rightarrow its activity in 1min only depends on its current activity

Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & D \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ D & 0.8 & 0 & 0.2 \end{pmatrix}$$

Markov chain example (discrete state space) – I

A Baby follows a Markov chain every minute with 3 states:

- S sleep
- E eat
- D diaper change
- \Rightarrow its activity in 1min only depends on its current activity

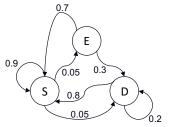
Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & D \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ D & 0.8 & 0 & 0.2 \end{pmatrix}$$

- 1) Is the Markov chain irreducible ? recurrent ? aperiodic ?
- 2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?
- 3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?

Markov chain example (discrete state space) – II

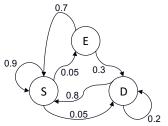
1) Is the Markov chain irreducible ? recurrent ? aperiodic ?



2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?

Markov chain example (discrete state space) – II

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?



2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?

$$x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T \qquad \mathbb{P}(X_2 | x_0) = x_0 P P = \begin{pmatrix} 0.885 \\ 0.045 \\ 0.070 \end{pmatrix}^T \qquad \mathbb{P}(X_{10} | x_0) = x_0 P^{10} = \begin{pmatrix} 0.8839779 \\ 0.0441989 \\ 0.0718232 \end{pmatrix}^T$$

3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?

MCMC Algorithms

MCMC in pratice 00000000000000

Markov chain example (discrete state space) – II

3) Suppose now that Baby his/her diaper changed. What about in 10 min ?

. . .

20/42

Intro 0000000 Markov chains 0000000

MCMC Algorithms

MCMC in pratice 000000000000000

Markov chain example (discrete state space) – II

3) Suppose now that Baby his/her diaper changed. What about in 10 min ?

$$x'_{0} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{T} \qquad \mathbb{P}(X_{10} | x'_{0}) = x'_{0} P^{10} = \begin{pmatrix} 0.8839779 \\ 0.0441989 \\ 0.0718232 \end{pmatrix}^{T}$$

Here, the Markov chain being aperiodic, recurrent and irreducible, there is a stationary law: $\tilde{p} = \tilde{p}P$.

0000000

MCMC Algorithms

MCMC in pratice 000000000000000

MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution \Rightarrow sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

$$\overbrace{X_0 \to X_1 \to X_2 \to \dots \to X_n}^{\text{Markov chain convergence}} \to \overbrace{X_{n+1} \to X_{n+2} \to \dots \to X_{n+N}}^{\text{Monte Carlo sample}}$$

21/42

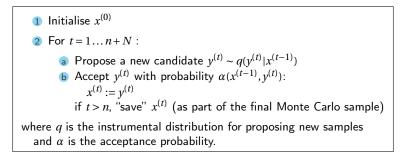
MCMC Algorithms

MCMC in pratice 00000000000000

MCMC Sampling

General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework



Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution *q* proposing new samples

 \Rightarrow infinite possibilities: some better than others

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution *q* proposing new samples

 \Rightarrow infinite possibilities: some better than others

To guaranty convergence towards the target \tilde{p} :

- the support of q has to cover the support of \tilde{p}
- *q* must not generate periodic values

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution q proposing new samples

 \Rightarrow infinite possibilities: some better than others

To guaranty convergence towards the target \tilde{p} :

- the support of q has to cover the support of \tilde{p}
- q must not generate periodic values

NB: *ideally* q is easy and fast to compute

Direct sample

MCMC Algorithms

MCMC in pratice 00000000000000

MCMC Sampling

Metropolis-Hastings algorithm

1 Initialise
$$x^{(0)}$$

2 For $t = 1, ..., n + N$:
a Sample $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$
b Compute the acceptance probability
 $\alpha^{(t)} = \min\left\{1, \frac{\tilde{p}(y^{(t)})}{q(y^{(t-1)})} / \frac{\tilde{p}(x^{(t-1)})}{q(x^{(t-1)}|y^{(t)})}\right\}$
c Acceptance-rejection step: sample $u^{(t)} \sim \mathcal{U}_{[0;1]}$
 $x^{(t)} = \begin{cases} y^{(t)} \text{ if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} \text{ else} \end{cases}$

$$\alpha^{(t)} = \min\left\{1, \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})} \frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})}\right\}$$

 \Rightarrow computable even if \tilde{p} is known only up to a constant ! (*like the posterior*)

Metropolis-Hastings: particular cases

Sometimes $\alpha^{(t)}$ computation simplifies:

- independent Metropolis-Hastings: $q(y^{(t)}|x^{(t-1)}) = q(y^{(t)})$
- random walk Metropolis-Hastings: $q(y^{(t)}|x^{(t-1)}) = g(y^{(t)} x^{(t-1)})$ If g is symetric (g(-x) = g(x)), then:

$$\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{q(y^{(t)}|x^{(t-1)})}{q(x^{(t-1)}|y^{(t)})} = \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{g(y^{(t)}-x^{(t-1)})}{g(x^{(t-1)}-y^{(t)})} = \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}$$

Pro and cons of Metropolis-Hastings

- 😁 very simple & very general
- 😁 allow sampling from uni- or multi-dimensional distributions
- 😕 choice of the proposal is crucial, but hard
- ⇒ huge impact on algorithm performances
- 🥲 quickly becomes inefficient dimension is too high
- NB: a high rejection rate often implies important computation timings

Ct I I I

Simulated annealing

Change $\alpha^{(t)}$ computation during the algorithm:

- 1 $\alpha^{(t)}$ must first be large to explore all of the state space
- 2 then $\alpha^{(t)}$ must become smaller when the algorithm converges

Simulated annealing

Change $\alpha^{(t)}$ computation during the algorithm:

- 1 $\alpha^{(t)}$ must first be large to explore all of the state space
- 2 then $\alpha^{(t)}$ must become smaller when the algorithm converges

1 Initialise
$$x^{(0)}$$

2 For $t = 1, ..., n + N$:
a Sample $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$
b Compute the acceptance probability
 $\alpha^{(t)} = \min\left\{1, \left(\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)}|y^{(t)})}\frac{1}{q(y^{(t)}|x^{(t-1)})}\right)^{\frac{1}{T(t)}}\right\}$
c Acceptance-rejection step: sample $u^{(t)} \sim \mathcal{U}_{[0;1]}$
 $x^{(t)} := \begin{cases} y^{(t)} \text{ if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} \text{ else} \end{cases}$

Simulated annealing

Change $\alpha^{(t)}$ computation during the algorithm:

- 1 $\alpha^{(t)}$ must first be large to explore all of the state space
- 2 then $\alpha^{(t)}$ must become smaller when the algorithm converges

1 Initialise
$$x^{(0)}$$

2 For $t = 1, ..., n + N$:
a Sample $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$
b Compute the acceptance probability
 $\alpha^{(t)} = \min\left\{1, \left(\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})}\right)^{\frac{1}{T(t)}}\right\}$
c Acceptance-rejection step: sample $u^{(t)} \sim \mathcal{U}_{[0;1]}$
 $x^{(t)} := \begin{cases} y^{(t)} \text{ if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} \text{ else} \end{cases}$

Ex:
$$T(t) = T_0 \left(\frac{T_f}{T_0}\right)^{\frac{t}{n}} \Rightarrow$$
 particularly useful for avoiding local optimal

© B. Hejblum

When the dimension $\nearrow \Rightarrow$ very hard to propose probable values

Gibbs samplers: re-actualisation coordinate by coordinate, while conditioning on the most recent values (no acceptance-rejection)

1 Initialise
$$x^{(0)} = (x_1^{(0)}, \dots, x_d^{(0)})$$

2 For $t = 1, \dots, n + N$:
a Sample $x_1^{(t)} \sim p(x_1 | x_2^{(t-1)}, \dots, x_d^{(t-1)})$
b Sample $x_2^{(t)} \sim p(x_2 | x_1^{(t)}, x_3^{(t-1)}, \dots, x_d^{(t-1)})$
c ...
d Sample $x_i^{(t)} \sim p(x_i | x_1^{(t)}, \dots, x_{i-1}^{(t)}, x_{i+1}^{(t-1)}, \dots, x_d^{(t-1)})$
e ...
f Sample $x_d^{(t)} \sim p(x_d | x_1^{(t)}, \dots, x_{d-1}^{(t)})$

NB: if the conditional distribution is unknown for some coordinates, an acceptance-rejection step can be included for this coordinate only (*Metropolis within gibbs*)

Intro 0000000 Direct samplir

MCMC Algorithms

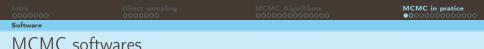
MCMC in pratice 000000000000000

MCMC Sampling

Your turn !

Practical: exercise 4

MCMC in practice



- BUGS : Bayesian inference Using Gibbs Sampling 1989 MRC BSU University of Cambridge (UK)
 ⇒ flexible software for Bayesian analysis in complex statistical models through MCMC algorithms
 - <u>WinBUGS</u>: <u>A</u> clic + Windows only + stopped development https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
 - OpenBUGS: <u>A</u> clic + Windows only + Linux partially https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
 - <u>JAGS</u>: e command line + R interface http://mcmc-jags.sourceforge.net/
- **STAN**: specialized for high-dimensional problems http://mc-stan.org/

JAGS software is modern and efficient :

- relies on the BUGS language to specify a Bayesian model
- \mathbf{R} interface thanks to rjags package
- - coda
 - HDInterval

Convergence diagnostics

Direct samplin 0000000 MCMC Algorithms

MCMC in pratice

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

Direct sampling

MCMC Algorithms

MCMC in pratice

Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

▲ No guaranty that this convergence will occur within finite time
 ⇒ study the convergence empirically for each analysis

Direct samplin 0000000 MCMC Algorithms

MCMC in pratice

Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

 \wedge No guaranty that this convergence will occur within finite time \Rightarrow study the convergence empirically for each analysis

 $\label{eq:several} $$ Initialisation of several Markov chains from different initial values $$ if convergence is reached, then these chains must be overlapping $$$

Direct samplin

MCMC Algorithms 000000000000000 MCMC in pratice

Convergence diagnostics

Graphical diagnostics

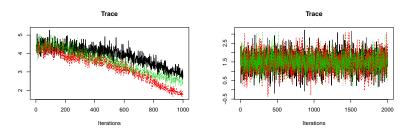
- Trace
- Posterior density
- Running Quantiles
- Gelman-Rubin diagram
- Auto-correlogram

32/42

Convergence diagnostics

Trace

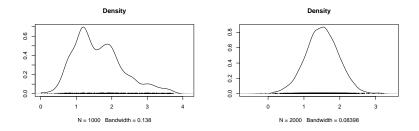
coda::traceplot()



chain traces must overlap and mix
 / n.iter and/or / burn-in

33/42

coda::densplot()



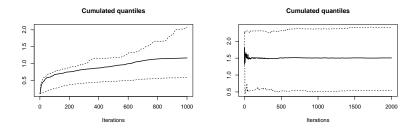
density must be smooth and uni-modal
 / n.iter and/or / burn-in

MCMC Algorithms 000000000000000

Convergence diagnostics

Running quantiles

coda::cumuplot()



running quantiles must be stable across iterations

iter and/or / burn-in

Bayes in biomedical research III

© B. Hejb<u>lum</u>

Convergence diagnostics

Gelman-Rubin statistic

- · variation between the different chains
- variation within a given chain

If the algorithm has properly converged, the between-chain variation must be close to zero

 $\theta_{[c]} = (\theta_{[c]}^{(1)}, \dots, \theta_{[c]}^{(N)})$ the *N*-sample from chain number $c = 1, \dots, C$ $\frac{N-1}{N}W\frac{1}{N}B$

Gelman-Rubin statistic: $R = \frac{\frac{N-1}{N}W\frac{1}{N}B}{W}$

- between-chain variance: $B = \frac{N}{C-1} \sum_{c=1}^{C} (\bar{\theta}_{[C]} \bar{\theta}_{.})^2$
- chain average: $\bar{\theta}_{[c]} = \frac{1}{N} \sum_{t=1}^{N} \theta_{[c]}^{(t)}$
- global average: $\bar{\theta}_{\cdot} = \frac{1}{C} \sum_{c=1}^{C} \bar{\theta}_{[C]}$
- within-chain variance: $s_{[c]}^2 = \frac{1}{N-1} \sum_{t=1}^N (\theta_{[c]}^{(t)} \bar{\theta}_{[C]})^2$

$$N \to +\infty \& B \to 0 \Rightarrow R \to 1$$

Other statistics exist. . .

(C) B. Hejblum

Direct samplin

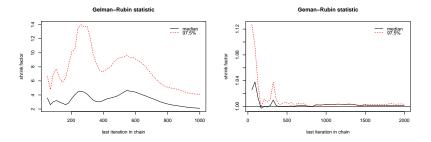
MCMC Algorithms

MCMC in pratice

Convergence diagnostics

Gelman-Rubin diagram

coda::gelman.plot()



Gelman-Rubin statistic median must remain under the 1,01 threshold (or 1,05)
 / n.iter and/or / burn-in

© B. Hejblum

Convergence diagnostics

Direct samplin

MCMC Algorithms

MCMC in pratice

Effective Sample Size (ESS)

Markov property \Rightarrow **auto-correlation** between values sampled after one another (dependent sampling) :

- reduce the amount of information available within a sample size n
- slows down LLN convergence

Effective sample size quantifies this:

$$ESS = \frac{N}{1 + 2\sum_{k=1}^{+\infty} \rho(k)}$$

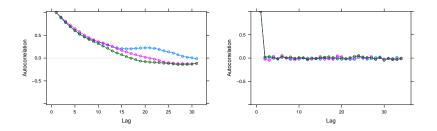
where $\rho(k)$ is the auto-correlation with lag k.

Space out saved samples (e.g. every 2, 5, or 10 iterations)

 \Rightarrow reduces dependency within the Monte Carlo sample generated

38/42

coda::acfplot()



auto-correlations must decrease rapidly to oscillate around zero
 / thin and/or / n.iter and/or / burn-in

Monte Carlo error

For a given parameter, quantifies the error introduced through the Monte Carlo method

(standard deviation of the Monte Carlo estimator across the chains)

- That error must be consistent from one chain to another
- The larger N (number of iterations), the smaller the Monte Carlo error will be

 \triangle This **Monte Carlo error** must be small with respect to the estimated variance of the *posterior* distribution

40/42

Thanks to MCMC algorithms, one can obtain a Monte Carlo sample from the *posterior* distribution for a Bayesian model

Monte Carlo method can then be used to get posterior estimates :

- Point estimates (*posterior* mean, *posterior* median, ...)

٠

Deviance Information Criterion (DIC)

Deviance is: $D(\theta) = -2\log(p(\theta|\mathbf{y})) + C$ with C a constant

Deviance Information Criterion is then:

 $DIC = \overline{D(\theta)} + p_D$

where $p_D = \left(D(\overline{\theta}) - \overline{D(\theta)}\right)$ represents a penalty for the effective number of parameters

 \Rightarrow DIC allows to compare different models estimated on the same data the smaller the DIC, the better the model !

[M Plummer, Penalized loss functions for Bayesian model comparison, Biostatistics, 2008]

Intro

Direct sampling 0000000 MCMC Algorithms 000000000000000 MCMC in pratice

Inference

Your turn !

Practical: exercise 5

Questions ?

