# Bayesian methods in biomedical research Part III: Bayesian computation

Boris Hejblum https://bayesbiomed.borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen April 11<sup>th</sup>, 2024



# Introduction

# Estimating the *posterior* distribution is often costly



MCMC in pratice 00000000000000

## Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but are key to its successful application

Direct samplin

MCMC Algorithms 00000000000000

Multidimensional parameters

# Numerical integration – I

Real world applications:  $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$ 

 $\Rightarrow$  joint *posterior* distribution of all *d* parameters

▲ hard to compute:

- complexe likelihood
- integrating constant  $f(\mathbf{y}) = \int_{\Theta^d} f(\mathbf{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta}$

• . . .

#### Analytical form rarely available

- $\Rightarrow$  numerical computations: integral of *d* multiplicity
  - difficult when d is big (numerical issues as soon as d > 4)

Multidimensional parameters

# Numerical integration – II

Even dimension 1 can be tough !

#### Example :

Let  $x_1, \ldots, x_n$  *iid* according to a Cauchy distribution  $\mathscr{C}(\theta, 1)$  with prior  $\pi(\theta) = \mathscr{N}(\mu, \sigma^2)$  ( $\mu$  and  $\sigma$  known)

$$p(\theta|x_1,\ldots,x_n) \propto f(x_1,\ldots,x_n|\theta)\pi(\theta)$$
$$\propto e^{-\frac{(\theta-\mu)^2}{2\sigma^2}} \prod_{i=1}^n (1+(x_i-\theta)^2)^{-1}$$

 $\underline{\wedge}$  normalizing constant has no analytical form  $\Rightarrow$  no analytical form for this *posterior* distibution

Multidimensional parameters

## Marginal *posterior* distributions

Objective: draw conclusion based on the joint posterior distribution

 $\Rightarrow$  probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\land}$  Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the parameter

 $\Rightarrow$  a sufficiently precise computation seems unrealistic

Multidimensional parameters

## Marginal *posterior* distributions

Objective: draw conclusion based on the joint posterior distribution

 $\Rightarrow$  probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\land}$  Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the **parameter** 

 $\Rightarrow$  a sufficiently precise computation seems unrealistic

Algorithms based on **sampling simulations** especially **Markov chain Monte Carlo** (MCMC)

Direct samplin

MCMC Algorithms

MCMC in pratice 000000000000000

**Computational Bayesian statistics** 

# Computational solutions

Bayes Theorem  $\Rightarrow$  *posterior* distribution

Direct samplin

MCMC Algorithms 00000000000000 MCMC in pratice 00000000000000

**Computational Bayesian statistics** 

## Computational solutions

Bayes Theorem  $\Rightarrow$  *posterior* distribution

 $\wedge$  in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

© B. Hejblum

**Computational Bayesian statistics** 

# Computational solutions

Bayes Theorem  $\Rightarrow$  *posterior* distribution

 $\underline{\wedge}$  in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

How can one estimate the *posteriori* distribution ?

- $\Rightarrow$  sample according to this posterior distribution
  - direct sampling
  - Markov chain Monte Carlo (MCMC)

**Computational Bayesian statistics** 

# Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

 $\Rightarrow$  use random numbers to compute quantities whose analytical computation is hard (or impossible)

**Computational Bayesian statistics** 

# Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

 $\Rightarrow$  use random numbers to compute quantities whose analytical computation is hard (or impossible)

• Law of Large Numbers (LLN)

so-called "Monte Carlo sample"

⇒ compute various functions from that sample distribution

**Example :** One wants to compute 
$$\mathbb{E}[f(X)] = \int f(x)p_X(x)dx$$
  
If  $x_i \stackrel{iid}{\sim} p_X$ ,  $\mathbb{E}[f(X)] = \frac{1}{N} \sum_{i=1}^N f(x_i)$  (LLN)  
 $\Rightarrow$  if one knows how to sample from  $p_X$ , one can then estimate  $\mathbb{E}[f(X)]$ 

Direct samplir

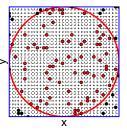
MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

**Computational Bayesian statistics** 

# Monte Carlo method: illustration

#### $\pi$ estimation:





A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square:  $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points {(x<sub>11</sub>, x<sub>21</sub>),..., (x<sub>1n</sub>, x<sub>2n</sub>)} = {P<sub>1</sub>,..., P<sub>n</sub>} on the 36 × 36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- ⇒ Compute the ratio (estimated probability of being inside the disk while in the square):  $\hat{p}_C = \frac{\sum P_i \in circle}{n}$

Direct samplir

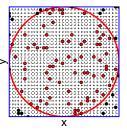
MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

**Computational Bayesian statistics** 

# Monte Carlo method: illustration

#### $\pi$ estimation:





A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square:  $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points {(x<sub>11</sub>, x<sub>21</sub>),..., (x<sub>1n</sub>, x<sub>2n</sub>)} = {P<sub>1</sub>,..., P<sub>n</sub>} on the 36 × 36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- ⇒ Compute the ratio (estimated probability of being inside the disk while in the square):  $\hat{p}_C = \frac{\sum P_i \in circle}{n}$

Direct samplii

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

**Computational Bayesian statistics** 

# Monte Carlo method: illustration

#### $\pi$ estimation:



A casino *roulette* (in Monte Carlo ?)



A 36×36 grid

If n = 1000 and 786 points are inside the disk :  $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$ 

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled *n*:  $\lim_{n \to +\infty} \hat{p}_C = p_C = \pi/4$  (LLN)

(C) B. Hejblum

Direct samplii

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

**Computational Bayesian statistics** 

# Monte Carlo method: illustration

#### $\pi$ estimation:



A casino *roulette* (in Monte Carlo ?)



A 36×36 grid

If n = 1000 and 786 points are inside the disk :  $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$ 

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled *n*:  $\lim_{n \to +\infty} \hat{p}_C = p_C = \pi/4$  (LLN)

**Monte Carlo** sample  $\Rightarrow$  compute various functions e.g.  $\pi = 4 \times$  the probability of being inside the disk Direct sampling

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

**Computational Bayesian statistics** 

# Your turn !



Practical: exercise 2

# Direct sampling methods



MCMC in pratice 00000000000000

Generating random numbers from common probability distributions

#### Random & pseudo-random numbers

There exist several ways to generate so-called "random" numbers according to known distributions

**NB:** computer programs do not generate truly random numbers

Rather **pseudo-random**, which seem random but are actually generated by a deterministic process (depending on a "**seed**" parameter).

Generating random numbers from common probability distributions

# Uniform sample generation

**Linear congruential algorithm**: sample pseudo-random numbers according to the Uniform distribution on [0,1] (Lehmer, 1948)

with  $y_0$  the "seed", i.e. the starting point

<u>Remark:</u>  $0 \le y_n \le m - 1 \Rightarrow$  in practice *m* very large (e.g. 2<sup>19937</sup>, default in **R** which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on  $\left[0,1\right]$  will be considered reliable and used by the different sampling algorithms

Generating random numbers from common probability distributions

# Other usual distributions

Relying on relationships between the different usual distributions starting from  $U_i \sim \mathscr{U}_{[0,1]}$ 

Direct sampling

MCMC Algorithms

MCMC in pratice 0000000000000000

Generating random numbers from common probability distributions

# Other usual distributions

Relying on relationships between the different usual distributions starting from  $U_i \sim \mathcal{U}_{[0,1]}$ 

Binomial Bin(n, p) :

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$
$$X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$$

Direct sampling 00€0000 MCMC Algorithms

MCMC in pratice 0000000000000000

Generating random numbers from common probability distributions

## Other usual distributions

Relying on relationships between the different usual distributions starting from  $U_i \sim \mathcal{U}_{[0,1]}$ 

Binomial Bin(n, p) :

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$
$$X = \sum_{i=1}^n Y_i \sim Bin(n, p)$$

Normal  $\mathcal{N}(0,1)$  (Box-Müller algorithm):

 $U_1$  and  $U_2$  are 2 independent uniform variables on [0;1]

$$Y_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
$$Y_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

 $\Rightarrow$   $Y_1$  &  $Y_2$  are independent random variables each following a  $\mathcal{N}(0,1)$ 

Sampling according to a distribution defined analytically

## Inverse transform sampling

<u>**Definition**</u>: For a function F defined on  $\mathbb{R}$ , its generalized inverse is defined as:  $F^{-1}(u) = \inf\{x \text{ such that } F(x) > u\}$ 

11/42

Sampling according to a distribution defined analytically

# Inverse transform sampling

<u>**Definition**</u>: For a function F defined on  $\mathbb{R}$ , its **generalized inverse** is defined as:  $F^{-1}(u) = \inf\{x \text{ such that } F(x) > u\}$ 

**Property**: Let • *F* be a cumulative probability distribution function • *U* be a uniform random variable on [0,1]Then  $F^{-1}(U)$  defines a random variable whith cumulative probability distribution function *F* 

- If 1 one knows F, the cumulative probability distribution function from which to sample
  - 2 one can invert F
- $\Rightarrow$  then one can sample this distribution from a uniform sample on [0,1]

Direct sampling ○○○○●○○ MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

# Inverse transform sampling: illustration

**Example:** sample from the Exponential distribution with parameter  $\lambda$ 

12/42

Sampling according to a distribution defined analytically

# Inverse transform sampling: illustration

**Example:** sample from the Exponential distribution with parameter  $\lambda$ 

- density of the Exponential distribution:  $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral):  $F(x) = 1 - \exp(-\lambda x)$

Let F(x) = u

Then  $x = \dots$ 

Sampling according to a distribution defined analytically

# Inverse transform sampling: illustration

**Example:** sample from the Exponential distribution with parameter  $\lambda$ 

- density of the Exponential distribution:  $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral):  $F(x) = 1 - \exp(-\lambda x)$

Let 
$$F(x) = u$$
  
Then  $x = -\frac{1}{\lambda}\log(1-u)$   
 $\Rightarrow$  and if  $U \sim U_{[0;1]}$ , then  $X = F^{-1}(U) = -\frac{1}{\lambda}\log(1-U) \sim E(\lambda)$ 

Direct sampling

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

# Your turn !



Practical: exercise 3



Sampling according to a distribution defined analytically

#### Acceptance-rejection method

Use an **instrumental distribution** g (which we know how to sample from)  $\Rightarrow$  to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Sampling according to a distribution defined analytically

## Acceptance-rejection method

Use an **instrumental distribution** g (which we know how to sample from)  $\Rightarrow$  to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Let f be the targeted density function Let g be a proposal density function (from which one knows how to sample) such that, for all x:  $f(x) \le Mg(x)$ While  $i \le n$ : 1 Sample  $x_i \sim g$  and  $u_i \sim \mathscr{U}_{[0,1]}$ 2 If  $u_i \le \frac{f(x_i)}{Mg(x_i)}$ , **accept** the draw:  $y_i := x_i$ else **reject** it and return to 1.

$$\Rightarrow (y_1, \dots, y_n) \stackrel{iid}{\sim} f$$

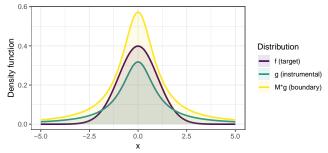
Direct sampling

MCMC Algorithms

MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

#### Acceptance-rejection: importance of the proposal



Example of a proposal and a target ditribution for the accept-reject algorithm

#### **Remark:** The smaller *M*, the greater acceptance rate

 $\Rightarrow$  the more the algorithm is efficient at sampling from f (less iterations for a sample size n)

So one wishes g the as close as possible to f !

 $\underline{\land} g$  will necessarily have heavier tail than the target

⇒ when the number of parameters increases, acceptance rate decrease svery rapidly (curse of dimension)

14/42



Direct samplin 0000000 MCMC Algorithms

# Markov chain definition

Markov chain: discrete time stochastic process

**Definition**: a series of random variables  $X_0, X_1, X_2, ...$  (all valued over the same state space) with the "memoryless" **Markov property**:  $p(X_i = x | X_0 = x_0, X_1 = x_1, ..., X_{i-1} = x_{i-1}) = p(X_i = x | X_{i-1} = x_{i-1})$ 

The set E of all possible values of  $X_i$  is called the **state space** 

2 parameters:

- 1 initial distribution  $p(X_0)$
- 2 tansition probabilities  $T(x, A) = p(X_i \in A | X_{i-1} = x)$

**NB:** only **homogeneous** Markov chains considered here:  $p(X_{i+1} = x | X_i = y) = p(X_i = x | X_{i-1} = y)$  Direct samplin

MCMC Algorithms

#### Markov chains properties

**Property**: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

## Markov chains properties

**Property**: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

**Property**: a Markov chain is **recurrent** if the trajectories  $(X_i)$  pass an infinite number of times in any set of non-zero probability of the state space

### Markov chains properties

**Property**: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

**Property**: a Markov chain is **recurrent** if the trajectories  $(X_i)$  pass an infinite number of times in any set of non-zero probability of the state space

**Property**: a Markov chain is **aperiodic** if nothing induces periodic behavior of the trajectories

# Stationary law & ergodic theorem

# <u>Definition</u>: A probability distribution $\tilde{p}$ is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$ , then $X_{i+j} \sim \tilde{p} \ \forall j \ge 1$

Remark: a Markov chain can admit several stationary laws

# Stationary law & ergodic theorem

# <u>Definition</u>: A probability distribution $\tilde{p}$ is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$ , then $X_{i+j} \sim \tilde{p} \ \forall j \ge 1$

Remark: a Markov chain can admit several stationary laws

**Ergodic theorem** (infinite space): A positive irreducible and recurrent Markov chain admits a single invariant probability distribution  $\tilde{p}$  and converges towards it

# Markov chain example (discrete state space) – I

A Baby follows a Markov chain every minute with 3 states:

- S sleep
- E eat
- D diaper change
- $\Rightarrow$  its activity in 1min only depends on its current activity

Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & D \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ D & 0.8 & 0 & 0.2 \end{pmatrix}$$

# Markov chain example (discrete state space) – I

A Baby follows a Markov chain every minute with 3 states:

- S sleep
- E eat
- D diaper change
- $\Rightarrow$  its activity in 1min only depends on its current activity

Matrix of transition probabilities:

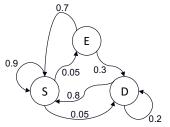
$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & D \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ D & 0.8 & 0 & 0.2 \end{pmatrix}$$

- 1) Is the Markov chain irreducible ? recurrent ? aperiodic ?
- 2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?
- 3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?



#### Markov chain example (discrete state space) – II

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?

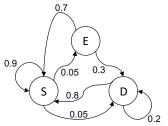


2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?



#### Markov chain example (discrete state space) – II

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?



2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?

$$x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T \qquad \mathbb{P}(X_2 | x_0) = x_0 P P = \begin{pmatrix} 0.885 \\ 0.045 \\ 0.070 \end{pmatrix}^T \qquad \mathbb{P}(X_{10} | x_0) = x_0 P^{10} = \begin{pmatrix} 0.8839779 \\ 0.0441989 \\ 0.0718232 \end{pmatrix}^T$$

3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?

MCMC Algorithms

MCMC in pratice 00000000000000

Markov chain example (discrete state space) – II

3) Suppose now that Baby his/her diaper changed. What about in 10 min ?

. . .

20/42

Intro 0000000 Markov chains 0000000

MCMC Algorithms

MCMC in pratice 000000000000000

Markov chain example (discrete state space) – II

3) Suppose now that Baby his/her diaper changed. What about in 10 min ?

$$x'_{0} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{T} \qquad \mathbb{P}(X_{10} | x'_{0}) = x'_{0} P^{10} = \begin{pmatrix} 0.8839779 \\ 0.0441989 \\ 0.0718232 \end{pmatrix}^{T}$$

Here, the Markov chain being aperiodic, recurrent and irreducible, there is a stationary law:  $\tilde{p} = \tilde{p}P$ .

0000000

MCMC Algorithms

MCMC in pratice 000000000000000

MCMC Sampling

### MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

### MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.



# MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution  $\Rightarrow$  sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

#### Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

# MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

#### Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

# MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

#### Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

$$\overbrace{X_0 \to X_1 \to X_2 \to \dots \to X_n}^{\text{Markov chain convergence}} \to \overbrace{X_{n+1} \to X_{n+2} \to \dots \to X_{n+N}}^{\text{Monte Carlo sample}}$$

21/42

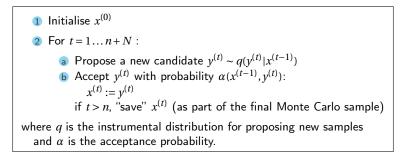
MCMC Algorithms

MCMC in pratice 00000000000000

MCMC Sampling

### General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework



#### Choosing the instrumental distribution

**No absolute optimal choice** for the instrumental distribution *q* proposing new samples

 $\Rightarrow$  infinite possibilities: some better than others

### Choosing the instrumental distribution

**No absolute optimal choice** for the instrumental distribution *q* proposing new samples

 $\Rightarrow$  infinite possibilities: some better than others

To guaranty convergence towards the target  $\tilde{p}$  :

- the support of q has to cover the support of  $\tilde{p}$
- *q* must not generate periodic values

### Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution q proposing new samples

 $\Rightarrow$  infinite possibilities: some better than others

To guaranty convergence towards the target  $\tilde{p}$  :

- the support of q has to cover the support of  $\tilde{p}$
- q must not generate periodic values

NB: *ideally* q is easy and fast to compute

Direct sample

MCMC Algorithms

MCMC in pratice 00000000000000

MCMC Sampling

# Metropolis-Hastings algorithm

1 Initialise 
$$x^{(0)}$$
  
2 For  $t = 1, ..., n + N$ :  
a Sample  $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$   
b Compute the acceptance probability  
 $\alpha^{(t)} = \min\left\{1, \frac{\tilde{p}(y^{(t)})}{q(y^{(t-1)})} / \frac{\tilde{p}(x^{(t-1)})}{q(x^{(t-1)}|y^{(t)})}\right\}$   
c Acceptance-rejection step: sample  $u^{(t)} \sim \mathcal{U}_{[0;1]}$   
 $x^{(t)} = \begin{cases} y^{(t)} \text{ if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} \text{ else} \end{cases}$ 

$$\alpha^{(t)} = \min\left\{1, \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})} \frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})}\right\}$$

 $\Rightarrow$  computable even if  $\tilde{p}$  is known only up to a constant ! (*like the posterior*)



### Metropolis-Hastings: particular cases

Sometimes  $\alpha^{(t)}$  computation simplifies:

- independent Metropolis-Hastings:  $q(y^{(t)}|x^{(t-1)}) = q(y^{(t)})$
- random walk Metropolis-Hastings:  $q(y^{(t)}|x^{(t-1)}) = g(y^{(t)} x^{(t-1)})$ If g is symetric (g(-x) = g(x)), then:

$$\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{q(y^{(t)}|x^{(t-1)})}{q(x^{(t-1)}|y^{(t)})} = \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{g(y^{(t)}-x^{(t-1)})}{g(x^{(t-1)}-y^{(t)})} = \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}$$

### Pro and cons of Metropolis-Hastings

- 😁 very simple & very general
- 😁 allow sampling from uni- or multi-dimensional distributions
- 😕 choice of the proposal is crucial, but hard
- ⇒ huge impact on algorithm performances
- 🥲 quickly becomes inefficient dimension is too high
- NB: a high rejection rate often implies important computation timings

Ct I I I

### Simulated annealing

Change  $\alpha^{(t)}$  computation during the algorithm:

- 1  $\alpha^{(t)}$  must first be large to explore all of the state space
- 2 then  $\alpha^{(t)}$  must become smaller when the algorithm converges

# Simulated annealing

Change  $\alpha^{(t)}$  computation during the algorithm:

- 1  $\alpha^{(t)}$  must first be large to explore all of the state space
- 2 then  $\alpha^{(t)}$  must become smaller when the algorithm converges

1 Initialise 
$$x^{(0)}$$
  
2 For  $t = 1, ..., n + N$ :  
a Sample  $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$   
b Compute the acceptance probability  
 $\alpha^{(t)} = \min\left\{1, \left(\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)}|y^{(t)})}\frac{1}{q(y^{(t)}|x^{(t-1)})}\right)^{\frac{1}{T(t)}}\right\}$   
c Acceptance-rejection step: sample  $u^{(t)} \sim \mathcal{U}_{[0;1]}$   
 $x^{(t)} := \begin{cases} y^{(t)} \text{ if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} \text{ else} \end{cases}$ 

# Simulated annealing

Change  $\alpha^{(t)}$  computation during the algorithm:

- 1  $\alpha^{(t)}$  must first be large to explore all of the state space
- 2 then  $\alpha^{(t)}$  must become smaller when the algorithm converges

1 Initialise 
$$x^{(0)}$$
  
2 For  $t = 1, ..., n + N$ :  
a Sample  $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$   
b Compute the acceptance probability  
 $\alpha^{(t)} = \min\left\{1, \left(\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})}\right)^{\frac{1}{T(t)}}\right\}$   
c Acceptance-rejection step: sample  $u^{(t)} \sim \mathcal{U}_{[0;1]}$   
 $x^{(t)} := \begin{cases} y^{(t)} \text{ if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} \text{ else} \end{cases}$ 

*Ex:* 
$$T(t) = T_0 \left(\frac{T_f}{T_0}\right)^{\frac{t}{n}} \Rightarrow$$
 particularly useful for avoiding local optimal

© B. Hejblum

When the dimension  $\nearrow \Rightarrow$  very hard to propose probable values

**Gibbs samplers**: re-actualisation coordinate by coordinate, while conditioning on the most recent values (no acceptance-rejection)

1 Initialise 
$$x^{(0)} = (x_1^{(0)}, \dots, x_d^{(0)})$$
  
2 For  $t = 1, \dots, n + N$ :  
a Sample  $x_1^{(t)} \sim p(x_1 | x_2^{(t-1)}, \dots, x_d^{(t-1)})$   
b Sample  $x_2^{(t)} \sim p(x_2 | x_1^{(t)}, x_3^{(t-1)}, \dots, x_d^{(t-1)})$   
c ...  
d Sample  $x_i^{(t)} \sim p(x_i | x_1^{(t)}, \dots, x_{i-1}^{(t)}, x_{i+1}^{(t-1)}, \dots, x_d^{(t-1)})$   
e ...  
f Sample  $x_d^{(t)} \sim p(x_d | x_1^{(t)}, \dots, x_{d-1}^{(t)})$ 

**NB**: if the conditional distribution is unknown for some coordinates, an acceptance-rejection step can be included for this coordinate only (*Metropolis within gibbs*)

Intro 0000000 Direct samplir

MCMC Algorithms

MCMC in pratice 000000000000000

MCMC Sampling

#### Your turn !



Practical: exercise 4



# MCMC in practice





- BUGS : Bayesian inference Using Gibbs Sampling 1989 MRC BSU University of Cambridge (UK)
   ⇒ flexible software for Bayesian analysis in complex statistical models through MCMC algorithms
  - <u>WinBUGS</u>: <u>A</u> clic + Windows only + stopped development https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
  - OpenBUGS: <u>A</u> clic + Windows only + Linux partially https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
  - <u>JAGS</u>: e command line + R interface http://mcmc-jags.sourceforge.net/
- **STAN**: specialized for high-dimensional problems http://mc-stan.org/



JAGS software is modern and efficient :

- relies on the BUGS language to specify a Bayesian model
- $\mathbf{R}$  interface thanks to rjags package
- - coda
  - HDInterval

Convergence diagnostics

Direct samplin 0000000 MCMC Algorithms

MCMC in pratice

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

Direct sampling

MCMC Algorithms

MCMC in pratice

Convergence diagnostics

#### Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

▲ No guaranty that this convergence will occur within finite time
 ⇒ study the convergence empirically for each analysis

Direct samplin 0000000 MCMC Algorithms

MCMC in pratice

Convergence diagnostics

#### Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

 $\wedge$  No guaranty that this convergence will occur within finite time  $\Rightarrow$  study the convergence empirically for each analysis

 $\label{eq:several} $$ Initialisation of several Markov chains from different initial values $$ if convergence is reached, then these chains must be overlapping $$$ 

Direct samplin

MCMC Algorithms 000000000000000 MCMC in pratice

Convergence diagnostics

# Graphical diagnostics

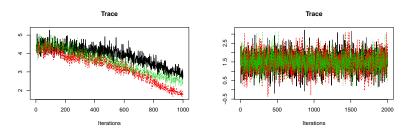
- Trace
- Posterior density
- Running Quantiles
- Gelman-Rubin diagram
- Auto-correlogram

32/42

Convergence diagnostics

#### Trace

#### coda::traceplot()

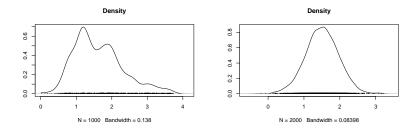


chain traces must overlap and mix
 / n.iter and/or / burn-in

33/42



#### coda::densplot()



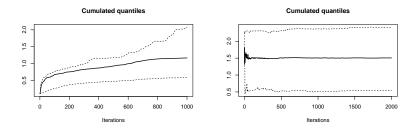
density must be smooth and uni-modal
 / n.iter and/or / burn-in

MCMC Algorithms 000000000000000

Convergence diagnostics

### Running quantiles

#### coda::cumuplot()



running quantiles must be stable across iterations

iter and/or / burn-in

Bayes in biomedical research III

© B. Hejb<u>lum</u>

Convergence diagnostics

# Gelman-Rubin statistic

- · variation between the different chains
- variation within a given chain

If the algorithm has properly converged, the between-chain variation must be close to zero

 $\theta_{[c]} = (\theta_{[c]}^{(1)}, \dots, \theta_{[c]}^{(N)})$  the *N*-sample from chain number  $c = 1, \dots, C$  $\frac{N-1}{N}W\frac{1}{N}B$ 

**Gelman-Rubin statistic**:  $R = \frac{\frac{N-1}{N}W\frac{1}{N}B}{W}$ 

- between-chain variance:  $B = \frac{N}{C-1} \sum_{c=1}^{C} (\bar{\theta}_{[C]} \bar{\theta}_{.})^2$
- chain average:  $\bar{\theta}_{[c]} = \frac{1}{N} \sum_{t=1}^{N} \theta_{[c]}^{(t)}$
- global average:  $\bar{\theta}_{\cdot} = \frac{1}{C} \sum_{c=1}^{C} \bar{\theta}_{[C]}$
- within-chain variance:  $s_{[c]}^2 = \frac{1}{N-1} \sum_{t=1}^N (\theta_{[c]}^{(t)} \bar{\theta}_{[C]})^2$

$$N \to +\infty \& B \to 0 \Rightarrow R \to 1$$

Other statistics exist. . .

(C) B. Hejblum

Direct samplin

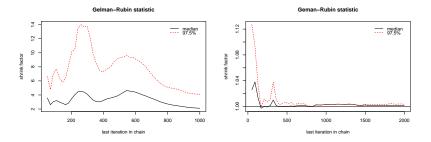
MCMC Algorithms

MCMC in pratice

Convergence diagnostics

#### Gelman-Rubin diagram

coda::gelman.plot()



Gelman-Rubin statistic median must remain under the 1,01 threshold (or 1,05)
 / n.iter and/or / burn-in

© B. Hejblum

Convergence diagnostics

Direct samplin

MCMC Algorithms

MCMC in pratice

# Effective Sample Size (ESS)

Markov property  $\Rightarrow$  **auto-correlation** between values sampled after one another (dependent sampling) :

- reduce the amount of information available within a sample size n
- slows down LLN convergence

Effective sample size quantifies this:

$$ESS = \frac{N}{1 + 2\sum_{k=1}^{+\infty} \rho(k)}$$

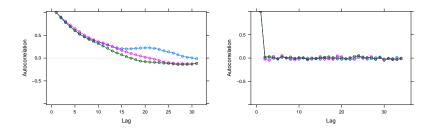
where  $\rho(k)$  is the auto-correlation with lag k.

Space out saved samples (e.g. every 2, 5, or 10 iterations)

 $\Rightarrow$  reduces dependency within the Monte Carlo sample generated

38/42

#### coda::acfplot()



auto-correlations must decrease rapidly to oscillate around zero
 / thin and/or / n.iter and/or / burn-in

# Monte Carlo error

For a given parameter, quantifies the error introduced through the Monte Carlo method

(standard deviation of the Monte Carlo estimator across the chains)

- That error must be consistent from one chain to another
- The larger N (number of iterations), the smaller the Monte Carlo error will be

 $\triangle$  This **Monte Carlo error** must be small with respect to the estimated variance of the *posterior* distribution

40/42

Thanks to MCMC algorithms, one can obtain a Monte Carlo sample from the *posterior* distribution for a Bayesian model

Monte Carlo method can then be used to get posterior estimates :

- Point estimates (*posterior* mean, *posterior* median, ...)

٠

# Deviance Information Criterion (DIC)

Deviance is:  $D(\theta) = -2\log(p(\theta|\mathbf{y})) + C$  with C a constant

Deviance Information Criterion is then:

 $DIC = \overline{D(\theta)} + p_D$ 

where  $p_D = \left(D(\overline{\theta}) - \overline{D(\theta)}\right)$  represents a penalty for the effective number of parameters

 $\Rightarrow$  DIC allows to compare different models estimated on the same data the smaller the DIC, the better the model !

[M Plummer, Penalized loss functions for Bayesian model comparison, Biostatistics, 2008]

Intro

Direct sampling 0000000 MCMC Algorithms 000000000000000 MCMC in pratice

Inference

#### Your turn !



Practical: exercise 5



# Questions ?



