Bayesian methods in biomedical research

Part IV: Bayesian applications in medical research

Boris Hejblum

https://bayesbiomed.borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen April 12th, 2024

Introduction

Examples of Bayesian applications

3 different real-world use cases in biomedical sciences: illustrations where the Bayesian approach can be particularly useful

- ♠ Disclaimer: this course is NOT
 - a meta-analysis short-course
 - an adaptive design in clinical trials short-course

Post-mortem re-analysis of an under-powered randomized trial

Original analysis of EOLIA

EOLIA (Combes et al., NEJM, 2018):

- randomized clinical trial
- evaluation of a new treatment for severe acute respiratory distress syndrome
- outcome: mortality rate after 60 days
- 249 patients:
 - 125 controls
 - mechanical ventilation (conventional treatment)
 - 124 treated
 - ⇒ ECMO (extracorporeal membrane oxygenation new(er) treatment)

Frequentist analysis:

⇒ Relative Risk of death at 60 days for ECMO compared to control: 0.76

$$CI_{95\%} = [0.55, 1.04]$$

p-value = 0.09

Bayesian re-analysis of EOLIA data

Goligher et al. (JAMA, 2018)

	Group	
	ECMO	Control
group size n	124	125
number of deaths at 60 days	44	57

Observed data in the EOLIA trial

Your turn!

Read EC Goligher et al.
Extracorporeal Membrane
Oxygenation for Severe Acute
Respiratory Distress Syndrome and
Posterior Probability of Mortality
Benefit in a Post Hoc Bayesian
Analysis of a Randomized Clinical
Trial, JAMA 320(21): 2251, 2018.
[DOI:10.1001/jama.2018.14276]

Practical: exercise 6

Bayesian meta-analysis

What is a meta-analysis

"An analysis of analyses"

⇒ a single quantitative summary of studies answering the *same research* question

Ex: medical therapies effects are often evaluated in multiple different studies.

What is a meta-analysis

"An analysis of analyses"

⇒ a single quantitative summary of studies answering the *same research* question

<u>Ex:</u> medical therapies effects are often evaluated in multiple different studies.

⇒ pool individual observations from multiple studies ?

What is a meta-analysis

- "An analysis of analyses"
- \Rightarrow a single quantitative summary of studies answering the *same research* question

<u>Ex:</u> medical therapies effects are often evaluated in multiple different studies.

- ⇒ pool individual observations from multiple studies ?
 - notential differences in the pooled experiments
 - ∧ only aggregated summary statistics estimates ("effect sizes") available
 - alongside uncertainty (e.g. standard errors)

Study Heterogeneity

∧ variations of the observed effects...

Study Heterogeneity

- A variations of the observed effects...
 - within-study uncertainty, or
 - real heterogeneity in effect size between the different studies

Study Heterogeneity

- ∧ variations of the observed effects...
 - within-study uncertainty, or
 - real heterogeneity in effect size between the different studies

Often, different studies used different populations

- ⇒ potential extra-variability
- + different sample sizes ⇒ also impact the estimate and its variability

Meta-analysis random effects model

Common approach for meta-analysis:

$$y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$$

$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

Meta-analysis random effects model

Common approach for meta-analysis:

$$y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$$

$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

Hierarchical generalization of the fixed effect model:

$$y_i \sim \mathcal{N}(\mu, \sigma_i^2)$$

Meta-analysis random effects model

Common approach for meta-analysis:

$$y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$$

$$\theta_i \sim \mathcal{N}(\mu, \tau^2)$$

 \Rightarrow between study variability: $y_i \sim \mathcal{N}(\mu, \sigma_i^2 + \tau^2)$

Hierarchical generalization of the fixed effect model:

$$y_i \sim \mathcal{N}(\mu, \sigma_i^2)$$

⇒ assume same average effect for each study

Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis?

Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis?

- few observations
- informative prior
- sequential

Scientific literature search

Scientific literature search

∧ FIRST (!) exhaustive search of the scientific literature: hard !!!

<u>M</u> effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Scientific literature search

∧ FIRST (!) exhaustive search of the scientific literature: hard !!!

Evidence synthesis

Meta-analysis ∈ evidence synthesis e.g. meta-regression, mechanistic modeling, . . .

Scientific literature search

∧ FIRST (!) exhaustive search of the scientific literature: hard !!!

effect size estimate (along with their standard errors) must often be
 transformed before the meta-analysis

Evidence synthesis

Meta-analysis ∈ evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
 - Serghiou & Goodman, JAMA, 2018

Scientific literature search

∧ FIRST (!) exhaustive search of the scientific literature: hard !!!

effect size estimate (along with their standard errors) must often be
 transformed before the meta-analysis

Evidence synthesis

Meta-analysis ∈ evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
 - Serghiou & Goodman, JAMA, 2018
 - a bug or a feature ?

Your turn!

Read ND Crins et al. Interleukin-2 Receptor Antagonists for Pediatric Liver Transplant Recipients: A Systematic Review and Meta-Analysis of Controlled Studies, *Pediatric Transplantation* 18(8):839, 2014. [DOI:10.1111/petr.12362]

Practical: exercise 7

Bayesian meta-analysis

Introduction to meta-analysis

BONUS content: CRM dose-escalation

Continuous Reassessment method

CRM [O'Quigley at al., 1990]

Objective: identify the optimal dose (i.e. Minimum Efficient Dose or Maximum Tolerated Dose)

⇒ select iteratively the dose for the next (batch of) recruited patient(s) based accumulating observations from previously included patients

Continuous Reassessment method

CRM [O'Quigley at al., 1990]

Objective: identify the optimal dose (i.e. Minimum Efficient Dose or Maximum Tolerated Dose)

- ⇒ select iteratively the dose for the next (batch of) recruited patient(s) based accumulating observations from previously included patients
 - e treat each patient ethically (dose best supported by the current evidence)
 - e prior knowledge
 - es sequential Bayesian: online update of the posterior

Your turn!

Read F Kaguelidou et al.
Dose-Finding Study of Omeprazole
on Gastric pH in Neonates with
Gastro-Esophageal Acid Reflux Using
a Bayesian Sequential Approach,
PLOS ONE 11(12):e0166207, 2016.
[DOI:10.1371/journal.pone.0166207]

Practical: BONUS exercise 9