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Intro Direct sampling MCMC Algorithms MCMC in pratice

Generating random numbers from common probability distributions

Random & pseudo-random numbers

There exist several ways to generate so-called “random” numbers
according to known distributions

NB: computer programs do not generate truly random numbers

Rather pseudo-random, which seem random but are actually generated
by a deterministic process (depending on a “seed” parameter).
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Generating random numbers from common probability distributions

Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers
according to the Uniform distribution on [0,1] (Lehmer, 1948)

1 Generate a sequence of integers yn such as:
yn+1 = (ayn +b) mod. m

2 xn+1 = yn+1
m°1

choose a, b and m so that yn has a long period & (x1, . . . ,xn) can be considered iid

with y0 the “seed”, i.e. the starting point

Remark: 0 ∑ yn ∑ m°1 ) in practice m very large (e.g. 219937,
default in which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on [0,1] will be
considered reliable and used by the different sampling algorithms
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Generating random numbers from common probability distributions

Other usual distributions
Relying on relationships between the different usual distributions
starting from Ui ªU[0,1]

Binomial Bin(n,p) :

Yi =1Ui∑p ªBernoulli(p)

X =
nX

i=1
Yi ª Bin(n,p)

Normal N (0,1) (Box-Müller algorithm):
U1 and U2 are 2 independent uniform variables on [0;1]

Y1 =
q
°2logU1 cos(2ºU2)

Y2 =
q
°2logU1 sin(2ºU2)

) Y1 & Y2 are independent random variables each following a N (0,1)
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Sampling according to a distribution defined analytically

Inverse transform sampling

Definition: For a function F defined on R, its generalized inverse is
defined as: F

°1(u) = inf{x such that F(x) > u}

Property : Let • F be a cumulative probability distribution function
• U be a uniform random variable on [0,1]

Then F
°1(U) defines a random variable whith cumulative probability

distribution function F

If 1 one knows F, the cumulative probability distribution function from
which to sample

2 one can invert F

) then one can sample this distribution from a uniform sample on [0,1]
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Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter ∏

• density of the Exponential distribution: f (x) =∏exp(°∏x)

• its cumulative probability distribution function (its integral):
F(x) = 1°exp(°∏x)

Let F(x) = u

Then x =

) and if U ª U[0;1], then X = F
°1(U) =° 1

∏ log(1°U) ª E(∏).
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Sampling according to a distribution defined analytically

Your turn !

Practical: exercise 3
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