MCMC Algorithms

MCMC Algorithms

Markov chain definition

Markov chain: discrete time stochastic process

Definition: a series of random variables X_0, X_1, X_2, \ldots (all valued over the same state space) with the "memoryless" Markov property:

$$p(X_i = x | X_0 = x_0, X_1 = x_1, ..., X_{i-1} = x_{i-1}) = p(X_i = x | X_{i-1} = x_{i-1})$$

The set E of all possible values of X_i is called the **state space**

2 parameters:

- 1 initial distribution $p(X_0)$
- 2 tansition probabilities $T(x,A) = p(X_i \in A | X_{i-1} = x)$

NB: only homogeneous Markov chains considered here:

$$p(X_{i+1} = x | X_i = y) = p(X_i = x | X_{i-1} = y)$$

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

Property: a Markov chain is **recurrent** if the trajectories (X_i) pass an infinite number of times in any set of non-zero probability of the state space

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

Property: a Markov chain is **recurrent** if the trajectories (X_i) pass an infinite number of times in any set of non-zero probability of the state space

Property: a Markov chain is aperiodic if nothing induces periodic behavior of the trajectories

Stationary law & ergodic theorem

Definition: A probability distribution \tilde{p} is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$, then $X_{i+j} \sim \tilde{p} \ \forall j \geq 1$

Remark: a Markov chain can admit several stationary laws

Stationary law & ergodic theorem

Definition: A probability distribution \tilde{p} is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$, then $X_{i+j} \sim \tilde{p} \ \forall j \geq 1$

Remark: a Markov chain can admit several stationary laws

Ergodic theorem (infinite space): A positive irreducible and recurrent Markov chain admits a single invariant probability distribution \tilde{p} and converges towards it

A Baby follows a Markov chain every minute with 3 states:

- S sleep
- E eat
- D diaper change
- ⇒ its activity in 1min only depends on its current activity

Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & D \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ D & 0.8 & 0 & 0.2 \end{pmatrix}$$

A Baby follows a Markov chain every minute with 3 states:

- S sleep
- E eat
- D diaper change
- its activity in 1min only depends on its current activity

Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & D \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ D & 0.8 & 0 & 0.2 \end{pmatrix}$$

- 1) Is the Markov chain irreducible? recurrent? aperiodic?
- 2) Suppose Baby is now sleeping. What about in 2 min? in 10 min?
- 3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min ?

18/42

1) Is the Markov chain irreducible? recurrent? aperiodic?

- 2) Suppose Baby is now sleeping. What about in 2 min? in 10 min?
- 3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min?

1) Is the Markov chain irreducible? recurrent? aperiodic?

2) Suppose Baby is now sleeping. What about in 2 min? in 10 min?

$$x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T \qquad \mathbb{P}(X_2 | x_0) = x_0 P P = \begin{pmatrix} 0.885 \\ 0.045 \\ 0.070 \end{pmatrix}^T \qquad \mathbb{P}(X_{10} | x_0) = x_0 P^{10} = \begin{pmatrix} 0.8839779 \\ 0.0441989 \\ 0.0718232 \end{pmatrix}^T$$

3) Suppose now that Baby is getting his/her diaper changed. What about in 10 min?

19/42

3) Suppose now that Baby his/her diaper changed. What about in 10 min?

. . .

3) Suppose now that Baby his/her diaper changed. What about in 10 min?

$$x_0' = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^T \qquad \mathbb{P}(X_{10}|x_0') = x_0' P^{10} = \begin{pmatrix} 0.8839779 \\ 0.0441989 \\ 0.0718232 \end{pmatrix}^T$$

Here, the Markov chain being aperiodic, recurrent and irreducible, there is a stationary law: $\tilde{p} = \tilde{p}P$.