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= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.
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MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:
1 the Markov chain must first converge to its stationary distribution:
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MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:
%
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2 then Monte Carlo convergence must also happen:
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MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:
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2 then Monte Carlo convergence must also happen:
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Markov chain convergence Monte Carlo sample
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General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework

© Initialise x©
2 Fort=1...n+N:
a Propose a new candidate y ~ g0 |x(=D)

b Accept y'¥ with probability a(x(~1, ).
202y

if £>n, “save” x(¥ (as part of the final Monte Carlo sample)

where ¢ is the instrumental distribution for proposing new samples
and «a is the acceptance probability.
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Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution g
proposing new samples

= infinite possibilities: some better than others
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Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution g
proposing new samples

= infinite possibilities: some better than others

To guaranty convergence towards the target p :
* the support of g has to cover the support of p
* g must not generate periodic values
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MCMC Sampling

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution g
proposing new samples

= infinite possibilities: some better than others

To guaranty convergence towards the target p :
* the support of g has to cover the support of p
* g must not generate periodic values

NB: ideally g is easy and fast to compute
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