More complex success criteria

More complex success criteria can be considered, for example:

- A significant p-value and an observed effect size above a minimum relevant limit
- A *q*% confidence interval of which the lower limit exceeds a minimum relevant limit
- A significant p-value for the null hypothesis that the effect is smaller or equal to the minimum relevant limit
- Criteria based on multiple endpoints
- Bayesian success criteria, e.g. $P[\delta > \Delta] > \pi$

FERRING PHARMACEUTICALS

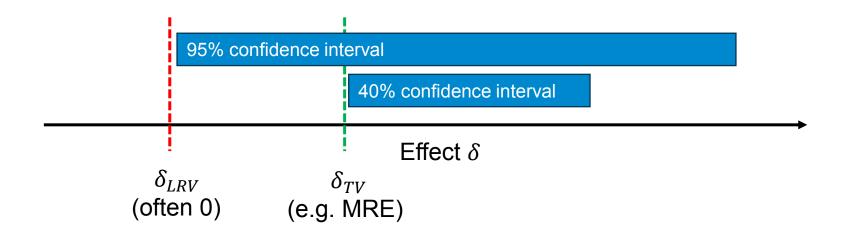
. . .

Exercise 3 – adding a requirement on the minimum relevant effect to assurance

- 1. To the plot from Exercise 2, add a line for assurance where success is declared if the p-value is significant AND the effect estimate is at least 1.5
 - Hint: modify the formula from Slide 31
- 2. What is the upper bound for this version of assurance?
- 3. Also add to the plot a line for assurance where success is declared in case of a significant p-value for evaluating the null hypothesis that the effect equals 1.5
 - Hint: modify the formula from Slide 31
- 4. What is the upper bound for this version of assurance?
- 5. Which version of assurance do you prefer for the case study?

Bonus: what sample size would we need for the confirmatory trial if we wish to reject a null hypothesis that the effect equals 1.5 and we assume the effect is 2 under the alternative and we require 90% power and wish to control the false positive rate at 2.5% one-sided?

Dual success criteria



- Criterion 1 (minimum requirement): at least 97.5% confidence that the effect exceeds δ_{LRV}
- Criterion 2 (relevance requirement): at least 70% confidence that the effect exceeds δ_{TV}
- Lower reference value (δ_{LRV}): usually, but not always, the threshold for 'statistical significance', e.g. 0 difference in mean response, odds ratio of 1, hazard ratio of 1 etc.
- Target value (δ_{TV}): usually clinically relevant (or commercially viable) value.

Declaring success with dual success criteria

Success is declared if:

The minimum requirement is met: $\bar{y}_1 - \bar{y}_0 > \delta_{LRV} + Z_{1-\alpha_0}\tau$

AND

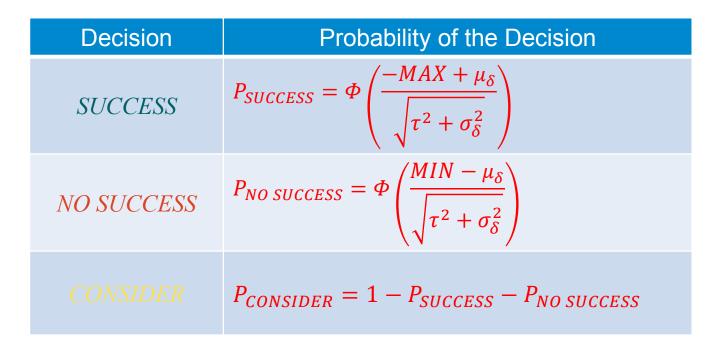
The relevance requirement is met: $\bar{y}_1 - \bar{y}_0 > \delta_{TV} + Z_{1-\alpha_1}\tau$, with for example $\alpha_0 = 0.025$ and $\alpha_1 = 0.3$

		Minimum requirement met?	
		Yes	No
Relevance requirement met?	Yes	Success	Consider
	No	Consider	No Success

Dual decision criteria – operating characteristics

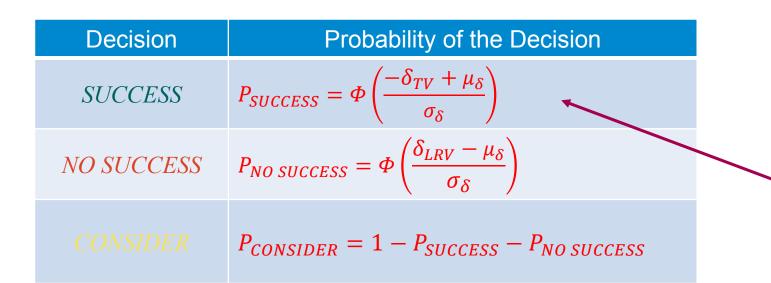
Both criteria are met (*SUCCESS*) if $\overline{y}_1 - \overline{y}_0 > \max(\delta_{LRV} + Z_{1-\alpha_0}\tau, \delta_{TV} + Z_{1-\alpha_1}\tau) = MAX$

Neither are met (*NO SUCCESS*) if $\bar{y}_1 - \bar{y}_0 < \min(\delta_{LRV} + Z_{1-\alpha_0}\tau, \delta_{TV} + Z_{1-\alpha_1}\tau) = MIN$



Dual decision criteria – upper bound

As $n \to \infty$, $MAX \to \delta_{TV}$ and $MIN \to \delta_{LRV}$ and therefore the upper bounds become



Same upper bound as assurance with success criteria:

- 1. Significant p-value for $H_0: \mu_1 \mu_0 = 0$ AND point estimate > δ_{TV}
- 2. Significant p-value for $H_0: \mu_1 \mu_0 = \delta_{TV}$

But more rigorous than 1. as it incorporates uncertainty around point estimate and more flexible than 2. allowing for smaller sample sizes.

